
Simon Stobart & David Parsons

Dynamic Web Application
Development using
PHP and MySQL

Simon Stobart & David Parsons

Dynamic Web Application
Development using
PHP and MySQL

Learn how to build multi-device database driven websites

Providing an end-to-end view of how modern web applications are
built, Dynamic Web Application Development takes a cohesive approach Dynamic Web Application Development takes a cohesive approach Dynamic Web Application Development
to building a software architecture from core components. It tells a
development story by taking you right through from analysis and design,
learning the core technologies, and tying them together using standard
tools, patterns and frameworks without straying into too much detail or
trying to cover too many alternatives.

Using PHP scripting and the MySQL database management system, this is a
contemporary and well targeted coverage of important areas of web application
development including Ajax, adaptive markup, web application frameworks,
standards and conformance, accessibility and security issues. It shows you
how to build functionality into a website using a variety of technologies. These
will work as a basic framework from which you will be able to explore more
challenging developments such as porting applications to mobile devices and
including more Web 2.0 features.

An ideal text for web programming courses, this book will help you whether
you are a student or need to reskill and want a dependable and accessible
self-study package.

Simon Stobart teaches and researches in the area of dynamic web
application development at the University of Sunderland, UK. He has written
a number of text books and holds the position of Fellow with both the British
Computer Society and the Institute of Analysts and Programmers.

David Parsons holds a senior academic post in the Institute of Information
and Mathematical Sciences at Massey University, Auckland, New Zealand.
His research interests include software development methods, web-based
applications and mobile computing systems.

Covers core building blocks:
PHP // MySQL // Web 2.0 // Ajax // Javascript // XHTML

The Toolbox:
WAMP, PHP Designer, MySQL
Workbench.

The Code:
All example code with the
addition of three worked larger
scale examples, illustrating a
hangman game, a shopping
cart with paged
display of items
for sale and
a members’
message system

CD-ROM Contents:

> Demonstrates good design
 and good practice
> Covers both client and server
 side technologies
> Covers hot technologies,
 e.g. Ajax
> Clear, separate working
 example scripts throughout
> Covers topics such as
 security, accessibility and
 conformance to guidelines

Key Features:

message system

Stobart
& Parsons

D
ynam

ic W
eb A

pplication D
evelopm

ent using
P

H
P

 and M
ySQ

L

www.cengage.co.uk/stobartFor your lifelong learning solutions:
www.cengage.co.uk and course.cengage.com

246x189_StobartParsons.indd 1 30/10/07 19:40:33

Dynamic Web Application
Development:
Using PHP and MySQL

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page i

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page ii

Australia ● Mexico ● Singapore ● Spain ● United Kingdom ● United States

Dynamic Web Application
Development:
Using PHP and MySQL
Simon Stobart & David Parsons

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page iii

Dynamic Web Application Development:
using PHP and MySQL
Simon Stobart and David Parsons

Publisher: Gaynor Redvers-Mutton

Editorial Assistant: Matthew Lane

Production Editor: Lucy Mills

Manufacturing Manager: Helen Mason

Marketing Manager: Jason Bennett

Typesetter: Newgen Imaging Systems (P) Ltd,
India

Cover Design: Adam Renvoirze

Text Design: Design Deluxe, Bath, UK

© 2008, Cengage Learning EMEA

All rights reserved by Cengage Learning 2008. The text of this
publication, or any part thereof, may not be reproduced or
transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, storage in an
information retrieval system, or otherwise, without prior
permission of the publisher.

While the publisher has taken all reasonable care in the
preparation of this book, the publisher makes no
representation, express or implied, with regard to the accuracy
of the information contained in this book and cannot accept
any legal responsibility or liability for any errors or omissions
from the book or the consequences thereof.

For product information and technology assistance, contact
emea.info@cengage.com.

For permission to use material from this text or product,
and for permission queries, email

Clsuk.permissions@cengage.com

Products and services that are referred to in this book may be
either trademarks and/or registered trademarks of their
respective owners. The publishers and author/s make no claim
to these trademarks.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from
the British Library

ISBN 13: 978-1-84480-753-6

Cengage Learning EMEA
High Holborn House, 50-51 Bedford Row
London WC1R 4LR

Cengage Learning products are represented in Canada by
Nelson Education Ltd.

For your lifelong learning solutions, visit www.cengage.co.uk
and course.cengage.com

Printed by C & C Offset, Hong Kong

1 2 3 4 5 6 7 8 9 10 – 10 09 08

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page iv

To my granddaughter, Grace Elizabeth, who only needs to smile to bring me so much joy.

Simon Stobart

To my daughter, Kate, who was born along with my first book.

David Parsons

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page v

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page vi

vii

Preface xiii

1 Introduction to Web Applications 1

1.1 What a Web Application Does 1

1.2 E-Everything – the Internet and the World Wide Web 4

1.3 Important Internet Technologies 5

1.4 Important World Wide Web Technologies 7

1.5 Special Types of Web Application 10

1.6 Web Application Architectures 11

1.7 The Web 2.0 and Ajax 13

1.8 So You Want to Be a Web Application Developer? 14

2 Web Application Requirements: Analysis and Design 19

2.1 What’s Different About Web Application Requirements? 19

2.2 Software Development Lifecycles 20

2.3 The Unified Modeling Language and the Unified Process 22

2.4 A Web Application Inception Phase 26

2.5 Modelling Requirements 26

2.6 Analysis Tools – Domain Models, Use Cases and Storyboards 30

2.7 Building Further Use Cases 38

2.8 From Analysis to Design 41

2.9 Webflow Design 42

2.10 Design Patterns for Web Page Structures 45

3 Structure and Content in the Presentation Layer: the
HyperText Markup Language (HTML) 53
3.1 Where It All begins – SGML 53

3.2 HTML – a Language for Web Pages 56

3.3 HTML Document Structural Elements 57

3.4 HTML Document Type 61

3.5 Structuring Text 61

CONTENTS

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page vii

viii CONTENTS

3.6 Lists 65

3.7 Attributes in HTML 68

3.8 Tables 71

3.9 Forms 76

4 Styling in the Presentation Layer: Cascading Style Sheets (CSS) 89

4.1 Separating out Presentation 89

4.2 CSS Syntax 91

4.3 Style Sheets 94

4.4 Applying Styles with ‘Class’ and ‘Id’ Attributes 103

4.5 Block and Inline Elements 106

4.6 Applying Styles to Lists and Tables 109

4.7 Style Sheet Cascades 112

4.8 Using CSS for Page Layout 114

5 Content, Structure and Validation: XML, DTD and XHTML 123

5.1 The Limitations of HTML 123

5.2 Semi-Structured Data 125

5.3 What Is XML? 127

5.4 Components of XML 129

5.5 Validating XML Documents 137

5.6 XHTML 149

6 Introduction to JavaScript 155

6.1 JavaScript – What and Why? 155

6.2 The Document Object Model (DOM) 156

6.3 Characteristics of JavaScript 157

6.4 JavaScript Objects 158

6.5 Debugging JavaScript 163

6.6 JavaScript Types and Variables 164

6.7 Using and Creating Objects 168

6.8 Control Structures 173

6.9 Writing Functions 178

7 Interactive JavaScript: Dynamic HTML, Client-Side
Validation and Ajax 187
7.1 Dynamic HTML (DHTML) 188

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page viii

7.2 JavaScript Events 191

7.3 Dynamic Style Sheets 198

7.4 Client-Side Form Validation 201

7.5 The Emergence of Ajax 210

8 Introduction to PHP 225

8.1 Welcome to PHP 226

8.2 Your First PHP Script 227

8.3 Simplifying Your First PHP Script 228

8.4 Jumping in and out of PHP 229

8.5 Separating PHP Instructions 231

8.6 Commenting Your Scripts 232

8.7 Basic Variables 233

8.8 Variable Types 234

8.9 Constants 238

8.10 Expressions 239

8.11 Predefined Variables 249

9 Flow of Control 253

9.1 The ‘if ’ Construct 254

9.2 The ‘switch’ Construct 259

9.3 The ‘while’ Loop Construct 264

9.4 The ‘do–while’ Loop Construct 266

9.5 The ‘for’ Loop Construct 267

9.6 The ‘foreach’ Loop Construct 269

9.7 Nested Loops 269

9.8 Breaking out of Loops 270

9.9 Continuing a Loop 272

10 Form Interaction 277

10.1 PHP and Form Interaction 278

10.2 A Simple Form 279

10.3 Combining PHP and Forms 284

10.4 Invoking the Correct Script 287

10.5 An Example Form 288

10.6 Accessing Form Elements 291

10.7 File Uploads 298

CONTENTS ix

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page ix

10.8 Form Validation and Data Retention 298

10.9 Hidden Data 306

11 Strings and Arrays 309

11.1 Strings – a Refresher 310

11.2 Creating Arrays 317

11.3 Using Arrays with Forms 324

11.4 Manipulating Arrays 327

12 Files, Cookies, Sessions and Email 341
12.1 Files 342

12.2 Cookies 350

12.3 Sessions 355

12.4 Uploading Files From Forms 360

12.5 E-Mailing Users 366

13 Functions, Dates and Times and Redirection 373

13.1 Functions 374

13.2 Separating Source Files 388

13.3 Getting the Time and Date 389

13.4 Random Numbers 392

13.5 Fruit-Machine Example 393

13.6 Page Redirection and Referral 395

14 Databases 401

14.1 Databases 402

14.2 phpMyAdmin Interface 405

14.3 Database Table Keys 410

14.4 Working with Data in phpMyAdmin 413

14.5 Extending our Database 428

15 Linking PHP to a Database 435

15.1 Connecting to a MySQL DBMS 435

15.2 Reading from a Database 437

15.3 Separating the Database Connection 439

15.4 Viewing Records 441

15.5 Limiting the Records Returned 443

x CONTENTS

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page x

15.6 Accessing Multiple Tables 449

15.7 Inserting, Deleting and Amending Records 453

15.8 Counting Records and Checking Existence 458

15.9 Select and Substring 461

16 Introducing Object Orientation 465

16.1 What Is Object Orientation? 466

16.2 PHP and Object Orientation 467

16.3 Multiple Source Files 476

16.4 Constructors and Destructors 479

16.5 Arrays and Objects 481

16.6 Functions and Objects 483

16.7 Default Arguments 484

16.8 An Object Invoking Another 485

16.9 Objects Within Objects 489

17 Object-Oriented Inheritance and Polymorphism 495

17.1 Diagramming Classes 496

17.2 Inheritance 497

17.3 Scope Resolution Operator 502

17.4 Class Abstraction 509

17.5 Polymorphism 510

17.6 Static Members and Methods 511

17.7 Class Constants 513

17.8 Type Hinting 514

17.9 Comparing Objects 516

17.10 The ‘final’ Keyword 519

17.11 Object Interfaces 520

18 Combining Ajax and PHP – Making the Web More Dynamic 525

18.1 Implementing Ajax 526

18.2 A Simple Calculator 527

18.3 A Simple Database Stock Example 531

18.4 A Zooming Photo Thumbnail Application 535

18.5 A Dynamic Histogram 539

18.6 A Simple Chat System 545

CONTENTS xi

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xi

xii CONTENTS

19 Conformance to Standards and Accessibility 555

19.1 Software Standards and Web Standardisation 556

19.2 HTML and XHTML 556

19.3 The W3C Markup Validation Service 560

19.4 CSS Validation 564

19.5 What Do You Get from Conformance and Validation? 567

19.6 Web Accessibility 567

19.7 Web Accessibility Guidelines and Checkpoints 570

19.8 Producing Triple-A Accessible Web Sites 578

19.9 WatchFire WebXACT 579

20 Building More Secure and Robust Web Applications 585

20.1 Web Application Security and Robustness 586

20.2 Good PHP Development Practice 586

20.3 Countering Malicious Data Injection 602

20.4 User Authentication and Passwords 608

Appendix 619
Index 627

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xii

xiii

Introduction

Welcome to Dynamic Web Application Development using PHP and MySQL. This book
covers all the knowledge required for you to implement very sophisticated dynamic web
applications. In order to do this, we will cover a number of different, but related, topics.
We begin by providing you some background to web applications in order for you to put
the technologies introduced later into context. We then describe the (X)HTML language
which is the building block of all web applications and scripts and underpins all of the other
technologies we describe and examine within this text. We introduce the concept of the
presentation layer, known as cascading style sheets, which enables you to separate out your
formatting and presentational features from the (X)HTML itself. Next, we introduce the
JavaScript client-side scripting language which enables you to develop more interactive and
powerful web applications. We introduce and describe Ajax, a more recent mechanism for
providing advanced dynamic web applications. Ajax is a mechanism for creating asynchro-
nous server connections, which enables us to create applications that operate far more
smoothly and effectively via a web interface, in much the same way as programs run on a
computer’s operating system, such as Microsoft Windows.

Our chosen scripting language is the PHP pre-processing language, a server-side application
which can be used to interface with databases and thus enable provision of even more
advanced on-line applications. We devote a few chapters to the PHP language as it is
extremely powerful and enables us to create very sophisticated applications. We conclude
the book by examining how the Ajax and PHP technologies can operate together and how
you should be concerned with ensuring that the scripts and applications that you create
conform to the various published standards. Finally, we examine what security issues you
should be concerned with when developing on-line applications and how to ensure that
your applications are as robust and secure as possible.

In the remainder of this preface, we describe how we have structured this text and how
we think you should use it for the greatest effect. We shall describe the application
 software you will need to use in order to make use of the different technologies described
above. We shall describe how to install the software and where you can find more
 information about it. We shall clarify some terminology which we will introduce later in
the book. We shall describe what additional material is available for download on the
book’s web site. Let us begin by describing who we wrote this text for.

Who is this book for?

The intended audience for this text is deliberately quite broad, however it is essentially for
those individuals who wish to learn more about how to create professional dynamic web
applications. As both educators and web developers ourselves we realise that individuals’
knowledge, background and web development experience will differ considerably and what
knowledge and skills you may want out of a book on the subject of dynamic web develop-
ment may be very different from someone else. You may have some well-practiced web

PREFACE

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xiii

xiv PREFACE

development skills already, which is good as we will move quickly onto more interesting and
in-depth subjects. You may have some previous programming experience in which case you
are likely to find the chapters concerning programming and scripting quite familiar to you.

What we have tried to do is create a text which encompasses all of the different technologies
with which you will need to get to grips and illustrates how these can be combined in order
for you to have the basic underpinnings to begin to create sophisticated web applications
of any kind. This is not a text designed for those with many years of web development
experience nor it is a reference text. Furthermore, given the limitations of space, we have had
to sacrifice the amount of space that we can devote to different subjects and technologies.
For example, we introduce the subjects of (X)HTML and JavaScript in the initial chapters
of the book but assume that the reader has some (although maybe limited) knowledge of
these. We focus more on the PHP scripting language and on how this language can be
 integrated with Ajax asynchronous technology. Many individuals should find these topics
new and exciting.

Book structure and features

This book is essentially divided into three sections, the first of which comprises Chapters 1
through 7. These chapters provide you with the essential background underpinning to web
technologies. Topics examined include (X)HTML, cascading style sheets (CSS) and Ajax. The
second section of the book, Chapter 8 to 17, introduces the PHP scripting language and
illustrates how it can be used to control the generation of (X)HTML and other
 technologies to produce very sophisticated dynamic applications. In this section, the concept
of databases is introduced and how a MySQL database can be created and interfaced to a
PHP application is explored. Finally, the third section of the text examines how Ajax
 technology can be interfaced to PHP scripts, how to create web applications which
 conform to the published standards and why this is so important, and what security issues
you should be aware of and how to ensure that your applications do not fall foul of them.

We have designed the book so that, depending on your background and experience and
what it is that you wish to learn, you can jump directly to that chapter and begin learning
from that point. So, for example, if you are already an experienced (X)HTML and
CSS developer but wish to brush up on some JavaScript then you can turn directly to
Chapter 6. If, on the other hand, all you want to know about is Ajax and you know
(X)HTML and JavaScript then you can turn directly to Chapter 7. If you are a PHP expert
then you can jump the PHP chapters and move to Chapter 18 to examine how Ajax can
be interfaced with PHP.

Each chapter begins by outlining the key learning objectives that the chapter is designed to
meet. In other words we tell you right at the start of the chapter what it is that you will
learn within the chapter. After a brief introduction to the topics covered, the main sections
of the chapter begin. Each chapter is designed to be read from start to finish. We have
included many figures and screen shots to complement the text and to ensure that each
topic is explained as clearly as possible. In the chapters which concentrate on different
scripting technologies, such as (X)HTML, CSS, AJAX and PHP, there are many small
 complete examples which you can either type in and run yourself or download from the
book’s web site. Script examples are shown like this:

This is how a script
is highlighted within a chapter

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xiv

PREFACE xv

All scripts are included on the CD accompanying this text which saves you the trouble of
typing them in if you don’t want to. Within the text, if there are any key points which need
to be highlighted, these are drawn to your attention with the use of a note, like this one:

Towards the end of most chapters there are some exercises for you to check your level of
understanding of the chapter contents. The answers to these exercises are available for
download from the book’s web site. The chapter concludes with a summary of what has
been described and following this are usually some references or lists of where you can go
to do some further reading on the subjects covered.

Hardware requirements

The examples in this text have all been tried and tested on a PC running a Microsoft
Windows operating system. More specifically, we have tested the examples on PCs running
Windows XP and the most recent Windows Vista. However, because the technologies we
introduce, such as (X)HTML, Ajax, JavaScript and PHP are all, in the main, platform
 independent, all our examples should work with computers running UNIX (or one of its
many open source variants) or Apple’s OS X operating systems. The only examples which
may not work as intended are those which interact with the operating system’s file system,
such as the file-upload or file-handling examples in PHP which are platform dependent.

Furthermore, when you have developed your own web applications you may wish to host
them so that anyone using the internet can see and access them. In order to do this, most
people require a ‘service provider’ who will host your applications on their web server.
How exactly you upload your scripts and configure your database on your service
provider’s computer system differs considerably from one provider to the next and we
couldn’t possibly explain how to do this for all of them. However, in the most part,
 service providers have excellent help and support to guide you through the process of
transferring your scripts and applications from your local PC onto their web server.

What software do you need?

As mentioned above we have tested the scripts and examples within this book on a
Windows-based PC and we will assume that this is the platform which you will be using
when trying out the examples and exercises within this book. However, regardless of what
computer platform you are using you will need the following software to successfully
implement all of the examples within this text:

● A web browser which supports, (X)HTML, CSS and Ajax.
● A web server.
● A PHP interpreter.
● A MySQL database.
● PHPMyAdmin database interface.
● A text or script editor.
● MySQL database modelling tool (not actually but you may find it useful).

Important facts are highlighted like this!NOTE

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xv

xvi PREFACE

If you are using Windows XP or Windows Vista then the great news is that it is quite easy
to get all of this software and it is all free. Our recommendations for each of these
 different software components follows.

Web browser

The Web browser is used to display the results of and control your scripts. Our examples
have been tested using Microsoft Internet Explorer 7.0.6, Mozilla Firefox 2.0.0.6 and
Opera 9.23. We are confident that they will work with any newer versions of these Web
browsers. Windows Vista comes with Internet Explorer 7 pre-installed but if you are using
an earlier version of the Windows operating system you can get it for free from here:

http://www.microsoft.com/windows/downloads/ie/getitnow.mspx

The latest version of Firefox is available for free from here:

http://www.mozilla.com/en-US/firefox/

The latest version of Opera is available for free from here:

http://www.opera.com/

Web server, PHP interpreter, MySQL database and PHPMyAdmin interface

The web server controls the serving and processing of your scripts. The PHP interpreter
processes your PHP code. The MySQL database system is used to store any databases your
application may use and the PHPMyAdmin tool is a web-based application written in PHP
which provides a convenient and relatively easy interface to creating and configuring your
MySQL databases. Once upon a time, you would have needed to obtain and configure each
of these software components separately, which could result in a number of difficulties.
Now however, there exists an integrated package of all of these components which can be
downloaded in a single step and is both easy and free. The package is called WAMP (which
stands for Windows, Apache (the web server), MySQL and PHP) and is available here:

http://www.wampserver.com/en/

A copy of the latest package is included on the CD accompanying this text as the total
download size is 21 MB. However, the applications bundled together in this package
are regularly updated and so you may wish to visit the web site to check you have the
 latest versions.

Text or script editor

You will need a text editor to create and edit your (X)HTML, JavaScript, CSS, Ajax and
PHP scripts. One of the simplest editors you can use is Notepad, which comes with
Windows, but it is not one we would recommend. There are many much more sophisticated
script editors which have been designed to provide far more support to the developer than
a simple text editor like Notepad ever could or was designed to do. Our current favourite
is PHP Designer which can be found here:

http://www.mpsoftware.dk/

It is available in a professional version (which you can trial but will need to buy) or a
 personal version (which has a reduced number of features but is free). PHP Designer

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xvi

PREFACE xvii

 provides you with a huge number of different features to help you create your applications,
including:

● An intelligent highlighter that automatically switches between PHP, HTML, CSS and
JavaScript depending on your position!

● Intelligent and advanced editing, for example providing code suggestions where
appropriate.

● Project and file management.
● The ability to debug and run PHP scripts within the editor.
● Integrated help.

A copy of this application is included on the CD.

MySQL database modelling tool

When you begin to design and create more complex databases you will quickly begin to wish
for software tools to help you design and model your database tables and relationships.
MySQL Workbench is currently an alpha release application (which means that it still has
some bugs and should not be used for commercial development) which supports the design
and creation of new databases. We introduce this application briefly in Chapter 14 and you can
download the latest copy from here, although a copy of this application is included on the CD:

http://dev.mysql.com/downloads/gui-tools/5.0.html

Each of the applications described above is easy to install. Simply insert the CD accompa-
nying this text and navigate to the application directory. Within it, you will find the
 following directories containing installation executables for each application:

● WAMP
● PHPDESIGNER
● MYSQLWORKBENCH

Object-oriented terminology

Chapters 16 and 17 introduce the topic of object orientation and describe how this can be
used with the PHP language to create large-scale, efficient and reusable applications.
Unfortunately, the object-oriented community uses many different terms to describe
essentially the same thing. Usually the terms used are unique to the application language,
but not always. If you are new to object orientation then this doesn’t really matter, as the
terms we use will be the only ones you have come across. However, if you have come
across object orientation previously then we thought it would be useful if we were very
clear as to the terminology we will be using with PHP:

● Class: A programming language construct used to group together methods and data
members.

● Method: Also known as a function, subroutine or procedure. This is a sequence of
statements which perform some action. A method may receive some parameters and
may return a value.

● Data member: Also known as a field, variable, instance variable or member. This
 contains some data encapsulated within a class or object.

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xvii

xviii PREFACE

● Object: An instance of a class.
● Class Members: The collective term for the methods and data members of a class.

What further resources are available on-line?

In addition to what is included in the book and accompanying CD, we have made a
 number of other resources available to the reader or instructor using this textbook as their
primary teaching aid:

● Powerpoint slides to accompany each chapter.
● Model solutions to the examples at the end of each chapter.
● Code and design documentation for complete examples illustrating the creation of a

simple hangman game, a shopping cart and a members’ message system.
● All code examples.

Summary
The companion website can be found at www.cengage.co.uk/stobart

Summary

In this preface we have introduced this book and described who it is targeted at and what
knowledge and skills it covers. We have explained the structure of the book and how best to
use it in order to get the best learning experience. We have introduced the different software
which we will be using and explained how to install it correctly. You are now ready to begin
the first chapter of the book which introduces the concept of web applications.

Stobart-FM.qxp:Stobart-FM 11/7/07 5:51 PM Page xviii

1

CHAPTER 1

Introduction to Web Applications

LEARNING OBJECTIVES

● To understand the main features and services of web applications

● To understand some of the basic technological building blocks of web
applications

● To understand how the World Wide Web has evolved from the Internet

● To understand some of the key aspects of the Web 2.0

The World Wide Web has had a profound impact on our lives since the 1990s. Some of the most
successful companies that based their business on web technologies, such as Amazon, Yahoo
and Google, have become as well known as the most famous global manufacturing and service
companies of previous eras. We now expect all the major organisations with which we have
 contact to have a web presence. Not only that, we also expect that presence to include
web-based applications that let us perform tasks such as managing our money, booking travel
and purchasing goods and services without having to step away from the computer. Just having
a web site is no longer enough; that site must support web applications.

In this chapter, we see what a web application does, and how it does it, by looking at the fundamen-
tal technologies that make web applications work and how they fit together. We also consider some
important features of web application architecture. We conclude the chapter by looking at Web 2.0,
a set of ideas that have had an important influence on how modern web applications are built.

What a web application does

What makes any kind of programming hard is largely a question of scale. Things that are
easy to program inside a single computer become much more difficult when we want
to distribute those things over space (to many users) and time (to exist beyond the run

1.1

INTRODUCTION

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 1

2 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

time of a single program). For example, let us assume that you are working as a software
developer and, like many developers, you have a text document stored on your computer
that you use as a log of things that you find helpful to keep track of, such as references to
useful resources or solutions to problems you have discovered. You can use text editors or
word processors installed on your own computer to access and edit that document. Now,
what if you want to be able to make that document available to others, because you feel
that this information may be helpful to, for example, other developers in your team? You
could, of course, distribute print or email copies, but that would get very tedious if you
had to keep doing this every time you made a new document entry and, after a while, there
would be lots of different versions of your document floating around. What you need to
do, of course, is to make the document available on a web server so that others can read it
over the World Wide Web. Hey presto, your document is now a blog (short for web log).
This leads us to the first thing that a web application can do:

A web application enables us to distribute documents over the World Wide Web.

Before going further we should perhaps make one thing clear, which is that we are
 introducing things that a web application can do, but in fact we are really talking about
what a web application server can do. A web application server is the software that hosts
your web applications and provides all of the services that we introduce in this section.

Now, maybe you are such a great writer, doing such interesting stuff, that you become a
very popular blogger. Many thousands of people all over the world start reading your blog.
Now, there can be many people all wanting to access your blog at the same time. Luckily,
your server is able to cope with these multiple concurrent requests for your document
without any problem. This brings us to another thing that web applications can do:

A web application manages concurrency, enabling access to a single web-based resource
by multiple users.

After a while, you find that people reading your blog keep sending you emails for
 suggestions about what you should include in it. Eventually you get so fed up with this that
you change your blog so that others can contribute their own entries to the on-line
 document. Hey presto, you have a wiki! (A wiki is a web site that is open to editing by
 anyone.) To make this work, your server has to be able to let users not only download your
document, but upload their own content as well. It then has to be able to dynamically
recreate the updated document for subsequent readers. This brings us to an essential role
of web applications:

A web application can generate dynamic content, building web pages on the fly from
sources of data that may include data supplied by users.

Eventually you find that your blog or wiki is becoming too difficult to manage because too
many people are able to make changes to it and they keep messing up your pages. You
decide that only people who register with you will be able to access and modify your site.
This is another important service that web applications can provide.

A web application can include declarative, role-based security, which enables you to
allow or deny access to specific resources to users based on their user role.

Over time, your original single document has become a large quantity of data, a kind of
Wikipedia (www.wikipedia.org) of knowledge related to your own areas of interest, partly
created by you but also created in large part by others. Instead of a single, simple piece of
data, your wiki now consists of many related pieces of data. Since there is now too much

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 2

1

1.1 WHAT A WEB APPLICATION DOES 3

information to be kept in a few pages, the underlying data that has been contributed to your
system requires some kind of managed data storage so that you can keep it for a long time,
re-use the same content in different contexts across different parts of the overall system, and
ensure that it has some kind of existence outside of your web application. To do this, you
need some kind of persistence, some way of storing your web application content in a data-
base or some other form of secondary storage, and you need some way of connecting your
web application to the database. Fortunately, web applications can help us to do that as well.

A web application provides facilities to connect to a database so that its content can be
kept in permanent storage, to be retrieved when required.

If the content of a web application is stored in a database, then we need to make sure that
any changes made to parts of it by others are handled correctly so that, for example,
changes made by one client do not clash with changes made simultaneously by another.
This means we have to be able to support transactions. Transactions make sure that any
changes made to persistent data are made in a managed and consistent way, so that if two
users try to change the same thing, either access is only allowed to one user at a time (pes-
simistic locking) or both users can try to make changes at the same time, but only the first
to submit their changes (to commit) will be successful (optimistic locking).

A web application utilises the transactional services of a database so that updates to its
content are reliable and consistent.

After all this we might also consider performance and reliability. How long might someone
have to wait before getting access to the web application if many others want to do the same
thing, and what happens if the machine that the application is running on fails for some
 reason? It may be that we need to provide more than one copy of the application so that
multiple clients can access it at the same time and so that, if one machine fails, we are still
able to provide the necessary services to our clients. In particular, we may find that over
time we need to support more and more clients without breaking the system we already
have, so we need some way of scaling our system to maintain performance and reliability.

A web application leverages the services of its underlying hardware and software
 infrastructure to run the same application across multiple machines, enabling scalability.

Figure 1.1 summarizes some of the web application features we have introduced in this section.

Some web application featuresFIGURE 1.1

Web Server

Manage concurrent access
from multiple clients

Distribute

My Wiki

Secure against
unauthorized clients

Persist in a
database

Manage
transactions

Web Server

My Wiki

Scale across
multiple
servers

Update from
multiple sources

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 3

4 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

All of the issues we have touched on in this section are common to web applications, and
all are difficult, tedious and expensive to program from scratch. Therefore it is very useful
if we can reuse an existing set of tools to provide all of these services, leaving us free to
write the code that addresses our particular business problem. The role of web application
development languages and their supporting tools is to provide just such a framework for
all of these services. However web applications cannot work in isolation because they rely
on the fundamental technologies of the Internet and the World Wide Web. In the next
 section, we explain some of the most important features of these technologies.

E-everything – the Internet and
the World Wide Web

Web applications rely on both the Internet and the World Wide Web to work, and one
important point to bear in mind is that the Internet and the World Wide Web are not
the same thing, since the first version of the Internet pre-dated the World Wide Web by
more than 10 years. The Internet is a network of networks that was developed from the
ARPAnet, a project that began in the 1970s. Its name comes from its sponsor, the US
 government Advanced Research Projects Agency (ARPA). It originally linked a small
 number of research sites together but used the same core technologies that now support
the much bigger Internet. In contrast, the World Wide Web (the web, or W3, for short) is
a hypertext-based collection of multimedia information accessible via the Internet that
dates from the 1990s (hypertext means that the content on the web is linked together so
that we can easily navigate between web pages that can be physically located anywhere in
the world). We might say, perhaps, that the Internet is the information superhighway and
the World Wide Web is the traffic that travels on it.

What has now become the World Wide Web was first developed by Tim Berners-Lee at
CERN (originally the acronym for the French Conseil Européen pour la Recherche Nucléair,
more generally known in English as the European Organisation for Nuclear Research) in
1990. It was originally a distributed hypertext system for managing information at CERN
(based on previous hypertext research), but quickly developed into something much
 bigger. From an academic tool that was intended to assist researchers, it evolved into both
an important platform for leisure applications and a key element in business, not only
for the exclusively web-based dot coms but also as part of the IT strategy of major
 corporations, governments and other organisations.

From an internal research tool, the web quickly began to evolve into something much bigger
and more important. Between 1991 and 1993, web servers began to come on-line outside
of CERN, using the underlying technology of the Internet. CERN made the web technology
free so it was easy for others to build on these systems. Originally, communication over the
web was text-based and therefore not very user friendly. The first graphical web browser
(an application able to display content from the Web) had been written by Tim Berners-
Lee in 1991, but this was internal to CERN. However, other graphical browsers were soon
developed and, in 1993, the NCSA (National Center for Supercomputing Applications)
made their Mosaic graphical browser publicly available. This was soon followed by the
first versions of the commercial browsers, Netscape Navigator and Microsoft Internet
Explorer, to be joined in subsequent years by many other increasingly sophisticated
browsers including Opera, Mozilla Firefox and Safari.

1.2

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 4

1

Graphical browsers, being able to display images and a range of text fonts, made access to
the World Wide Web easy and attractive and expanded its potential user base from just
technical specialists to the general public. The web began to get press coverage and reach
a wider audience, and in 1994 the World Wide Web Consortium (W3C) was formed to
create web standards and ensure that the proliferation of web technologies did not lead to
incompatibility between different systems. In 1993, the first tools for writing dynamic web
pages on the server were created using the Common Gateway Interface (CGI) developed
by the NCSA. These made it possible for web pages to be generated on the fly on the
 server. Instead of simply providing static content to users, where everyone sees the same
pages, CGI made it possible to generate pages for individual users, so they could see their
own search results, bank account details, flight bookings, shopping carts etc. Other server-
side technologies followed, including PHP (originally Personal Home Page Tools but later
renamed PHP: Hypertext Preprocessor), Java and Microsoft’s .NET, making it possible to
develop industrial-strength applications that ran over the web. In 1995, HotJava, the first
Java-aware browser, was launched by Sun Microsystems and Netscape introduced the
first version of JavaScript, bringing the potential for applications that could run inside a
browser. As both browser and server technologies continued to develop, terms such as ‘web
surfing’, ‘going on-line’ and ‘e-business’ entered common speech and things have never
been quite the same since.

Important Internet technologies

The World Wide Web depends on some important Internet technologies in order to work.
These include:

● TCP/IP (Transmission Control Protocol/Internet Protocol)
● IP addresses
● Domain names

TCP/IP (Transmission Control Protocol/Internet Protocol)

TCP/IP is actually a whole set of related protocols and tools that help computers to
 communicate with each other. Some that are used on the Internet include SMTP (Simple
Mail Transfer Protocol) for sending email messages and FTP (File Transfer Protocol), which
allows files to be easily copied to and from remote sites.

IP addresses

Computers on the Internet are initially connected to some kind of local network, either
within an organisation or as part of the services of an Internet service provider (ISP). To
build all these separate systems into one, hardware devices known as routers are used to
glue all the different networks together. For this to work, every machine on the Internet
has to have a unique IP (Internet Protocol) address so that communications can be routed
to the correct computer. An IP address is a 32-bit binary number giving billions of possible
combinations, though the most recent format, known as IPv6 (IP version 6 – the previous
version is actually version 4, IPv4), provides for many more by using a 128-bit binary number.

1.3

1.3 IMPORTANT INTERNET TECHNOLOGIES 5

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 5

6 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

IP addresses are expressed as four sets of dotted decimal numbers using the format
nnn.nnn.nnn.nnn. Each of these numbers falls in the range 0–255, for example, 127.0.0.1.

IPv6 addresses are written as eight 4-digit. hexadecimal numbers
 separated by colons.NOTE

Given an IP address, one machine can connect to another as if they were on the same
 physical network. Some machines have fixed IP addresses, while others are temporarily
allocated an IP address from a pool when they connect, a technique known as DHCP
(Dynamic Host Configuration Protocol.) This pooling of IP addresses is more efficient in
terms of being able to reuse the same address for different machines at different times. It
also reduces the administration required to ensure that each machine has an appropriate
address, particularly for systems that have to give Internet access to very large numbers of
computers, such as commercial ISPs.

Domain names

Most computers that host web sites use domain names rather than actual IP addresses. This
means that users can, for example, visit www.w3.org rather than use the actual IP address
of the World Wide Web Consortium site. The Domain Name System (DNS) enables a
domain name to be converted into a valid IP address. Resolver programs query name
servers for IP addresses and enable clients to be routed to the actual host machine. The
DNS consists of a number of dedicated servers (a distributed database) that maintain
 naming information for different zones. A zone is a set of related domain names, ‘.com’, ‘.org’,
etc. that appear at the same level of the DNS, which has a tree structure (see Figure 1.2).

Specific domains appear in a particular zone, for example the W3C domain is within the
‘org’ zone (w3.org). The highest level zone is known as the ‘root domain’ and under
this comes the zone that encompasses all the top-level domains, including the country code
domains. For each country, there is a zone that contains the various types of domain within
that country, using zones such as ‘co’ for companies and ‘ac’ for academic institutions.
Because of this tree structure, with layers of zones each managed separately, several
 different name servers may be involved in resolving a single domain name request. Domain
names are controlled by the Internet Assigned Numbers Authority (IANA), which is
administered by the Internet Corporation for Assigned Names and Numbers (ICANN).
The number of domain types made available by these organisations has increased steadily

The DNS tree structure with some of the Internet zones and domainsFIGURE 1.2

Top-level domains

Domains in the ‘uk’ zone

com intedunetorg ukgovmil

Root domain

co ac
w3

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 6

over the years as new types of web site have been developed, including the ‘.tv’ domain for
television services and ‘.mobi’ for mobile services.

Using domain names is better than just using IP addresses because domain names are easier
to remember and the names usually reflect the identity of the owner (for example,
‘ibm.com’, ‘w3.org’, ‘harvard.edu’). It is also more flexible to use DNS names rather than
IP numbers, since the mapping between a domain name and an IP address can change, so the
same name can migrate between different host systems. Domain names are also important
for email, since they are used in email addresses (for example, web-human@w3.org).

Important World Wide Web technologies

On its own, the Internet provides the possibility for different computers across the world
to connect to each other and transfer data. However the World Wide Web adds some very
important technologies to the underlying platform of the Internet. These include:

● HyperText Transfer Protocol (HTTP)
● HTML
● URLs, URIs and URNs

HyperText Transfer Protocol (HTTP)

The World Wide Web uses the HyperText Transfer Protocol (HTTP) to send information.
When using this protocol, the domain name (or IP address) is preceded by ‘http://’ (for
example, http://www.webhomecover.com). Web browsers usually have ‘http://’ as their
default protocol so this prefix is frequently left off web site names. HTTP is a request–
response protocol. Clients (usually browser software) send a request to a web server, which
is software that is able to host web-based content and serve it to clients on request. The
server handles the incoming request and provides a response, usually in the form of a page
written in the HyperText Markup Language (HTML), which browsers can interpret.
HTTP requests are handled by default on port 80 of the server. A server port is a number
used to identify a particular process on the server that another system can connect to.
Many common services, including HTTP, are allocated standard port numbers to simplify
communication.

HTTP requests are always of a specific type; GET, POST, HEAD, PUT, DELETE,
 CONNECT, OPTIONS or TRACE. All of these request types have their uses but, in most
web applications, the requests are usually limited to being either GET or POST. In most
cases, either of these can be used to achieve the same result. A GET request is intended
to retrieve information from the server and it often contains a search query or other
 parameter data. A POST request is intended to send data to the server, in most cases
from an HTML form. A form is a part of a web page that lets a user provide data using
components such as text fields, select lists and radio buttons. Forms have an ‘action’ which
contains the web address of an application running on a server that knows how to process
the contents of the form. This is where the data is sent when the user presses the ‘submit’
button on the web page.

What comes back from the server, following an HTTP request, is an HTTP response,
which in many cases will be a web page, but can be some kind of code number to

1.4

1.4 IMPORTANT WORLD WIDE WEB TECHNOLOGIES 7

1

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 7

8 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

 indicate errors, problems, or actions that the browser should take such as redirecting to
another web site. Some examples of HTTP response codes are ‘200 OK’ (the code that
is used with a web page), ‘401 Unauthorized’ (where security is being used) and ‘404 Not
Found’ (when the requested page cannot be found). Figure 1.3 shows the basic HTTP
request–response cycle.

Normal HTTP traffic is not encrypted in any way, so is not secured against being read by
a third party. In most cases this does not matter, but sometimes we need to send or receive
information over the Web that we do not want others to be able to read. Therefore HTTP
also comes in a secure form that allows us to transfer sensitive data, such as credit card
numbers, safely across the Internet. This version of HTTP is known as HTTPS and uses a
number of technologies including Public Key Infrastructure (PKI), encryption and digital
certificates. The ‘S’ in ‘HTTPS’ comes from the Secure Sockets Layer (SSL), a secure
 communication protocol originally developed by Netscape. HTTPS connections use a
 special server port (443) to separate secure traffic from normal HTTP connections. As well
as HTTPS being necessary for securing user data, many web-based systems need to authen-
ticate users (find out who they are, generally by asking for a user name and password) and
then authorize them to have access to appropriate resources. HTTPS is also used to enable
this kind of secure login by ensuring that the username and password are encrypted.

HTML

As we saw in the previous section, web clients use browser software to request, download
and display information from web servers. That information is mainly in the form of HTML
pages. HTML pages are text documents that contain special tags telling the browser what
type of information they contain. These tags are surrounded by angle brackets and indicate
the mark-up of the web page, to control the structure and presentation of the content.
This, for example, is how a typical HTML page begins, specifying the text to appear in the
browser’s title bar:

�html�

�head�

�title�My Page�/title�

�/head�

�body� . . .

This is a somewhat simplified view of HTML, but is perfectly
 acceptable to most web browsers.NOTE

The HTTP request–response cycleFIGURE 1.3

Client
browser

HTML
Page

Server
1. HTTP Request

3. HTTP Response

2. Process
request and
return page
or HTTP
response
code

Port
80

HTML
PageHTML

PageHTML
Page

HTML
Page

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 8

Tags do not specify exactly how a page will appear. It is up to the browser to format the
page and manage its content, so the same page can look different in different browsers.
Users can customise their browser to make pages appear in the way that they want; they
can, for example, change the size or style of the standard text font. As well as text, these
pages can contain images, sound, animations and other downloadable programs.

Using a web browser as the client for a web application is great for supporting large
 numbers of casual users (such as those using an on-line store or downloading music to their
mobile phones) because it would not be realistic to expect all users to install separate
 special client programs just to use a particular service. However, browsers do support
 ‘plugins’, which are programs that can be installed into the browser to provide additional
functionality. Common examples of plugins include Flash, Real Player and Adobe Acrobat.
Browsers can also support programming languages such as JavaScript and Java applets,
enabling simple programs to be downloaded and run within the browser window.

URLs, URIs and URNs

Uniform Resource Locators (URLs) are the complete specifications of the locations of
Internet resources. A URL comprises a number of elements:

● The protocol of the request (the browser’s default is usually http://)
● The IP address or domain of the server
● The port number (port 80 for HTTP and 443 for HTTPS)
● The subdirectory path from the ‘document root’ (if applicable)
● The name of the resource (though there is often a default page which is loaded if no

name is specified)

For example, the following URL includes all of these elements.

http://www.webhomecover.com:80/help/callcentres.htm

Since the http protocol is usually the browser’s default and the port number is the default
on the server, in most cases we can exclude them, so our previous example is more likely
to be written as:

www.webhomecover.com/help/callcentres.htm

If we use only the domain name, many web sites are configured with a default resource,
which is loaded when no specific file is requested. If the example domain has a default
resource, then the following URL should result in a page being served to the browser:

www.webhomecover.com

A URL is a specific kind of Uniform Resource Identifier (URI) which identifies a resource
that can be downloaded from the web. Another specific type of URI is the Uniform
Resource Name (URN). Although these have similar formats to URLs, they do not
 necessarily specify a downloadable resource. The purpose of a URN is simply to provide a
globally unique name for something, not necessarily to provide a name that points to
a web-based resource. The term URL is very widely used, but URI is the more general (and
correct) term.

1.4 IMPORTANT WORLD WIDE WEB TECHNOLOGIES 9

1

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 9

10 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

Special types of web application

The web is full of public web sites that provide information using web pages to anyone who
can connect to the World Wide Web using a browser. There is also a very large number of
Business to Customer (B2C) web sites that make products and services available to
 anyone who has an Internet connection and a web browser. However there are some
 special-purpose web applications that have particular characteristics. Three important
examples of these are intranets, extranets and portals.

Intranets

As well as having a public presence on the Internet, many organisations maintain a
 private intranet behind a security firewall. An intranet consists of web pages and
other resources that are only available inside the organisation. Intranets have a low
cost of ownership because they use the standard technologies of the Internet. They
increase internal communication while using less paper for things like internal
phone books, software and procedure manuals, forms etc. They get information out of
central databases in a form everyone can use from the desktop. Intranets have proved
valuable for all kinds of organisations, for example, credit-card companies work with
many banks and an intranet can be used as a central repository for information about all
those banks, while pharmaceuticals companies have used intranets to draw information
from many sources worldwide on drug trials and new drug submission regulations for
all countries.

Extranets

An extranet falls somewhere between the Internet and an organisation’s intranet. Only
selected outsiders, such as customers, suppliers or other trading partners, are allowed
access an extranet. Extranets can range from highly secure Business to Business (B2B) sys-
tems to self-registration systems such as those frequently used for downloading evaluation
software. Extranets can be used, for example, to allow web shopper customers to log in to
check the status of their orders over a secure connection, or users of courier companies to
check where their delivery is at any point in time.

Portals

A portal is a special kind of web application. Its role is to act as a gateway (the meaning
of ‘portal’) into a number of other applications. The structure of a portal is typically to
present a number of portlets, which are window-based links into other applications. They
also commonly provide facilities for personalisation, so that users can customize which
portlets they are presented with and also change the layout and look and feel of the
 portal. Portals are often used by public sites that encourage user registration, such as
Yahoo. They are also often used by organisations as a route into the various applications
provided on the company intranet. In the mobile context, portals are a popular way for
mobile service providers to enable easy access to the mobile Internet. Mobile portals
such as Vodafone Live! provide links to various applications within the ‘walled garden’ of

1.5

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 10

services provided by the mobile network carrier, as well as more general access to the
mobile Internet.

Web application architectures

To understand how a web application provides services to clients across the web, it is
 necessary to have some understanding of the architectures of distributed computer
 systems. In this section, we introduce the concepts of layers and tiers.

Layers

The concept of a layered architecture is one where we regard different parts of a
 software system as having different and separate roles. This is a conceptual, rather
than necessarily a physical, layering of system components. The basic three layers are
the presentation layer (which deals with the user interface), the business logic layer
(which handles the business processes and concepts used in the application) and the
data management layer (which deals with managing and persisting the underlying data
in the system).

If you think about how this model relates to, for example, the type of word processor that
runs ‘standalone’ on a desktop computer (see Figure 1.4), you can see that there are certain
parts of a word-processing program that deal with presentation, that is, how we see the
document on the screen. This may be quite complex and allow multiple different views of
the same document, for example an editing view and a print preview. Behind this layer is
the business logic layer that contains all the processes that we need to perform when
 creating and editing documents, such as spell checking, formatting, paginating, editing, etc.
This layer also contains the main concepts that we deal with in the application, such as
 documents, paragraphs, words, letters, diagrams, etc. Finally, beneath this layer, is the
data management layer. The job of this layer is to enable our documents to be saved
and reloaded, probably in simple flat (sequential) files so that they can persist between
 different runs of the word-processing program.

1.6

1.6 WEB APPLICATION ARCHITECTURES 11

1

The conceptual layers of a word-processing systemFIGURE 1.4

Single computer

Data Management Layer

Business Logic Layer

Presentation Layer

Save to file, load from file, …

Spell checking, formatting,
paginating, editing, …

Documents, paragraphs, words,
letters, diagrams

Desktop Word Processor

processes

concepts

Editing view, print preview, …

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 11

12 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

The important feature to note about our layered word-processing example is that we
assume that all three layers would be implemented in a single program running on one
computer. In other words the layers are conceptual, not physical.

Tiers and distributed systems

When we talk about tiers, we are also talking about layers. However the difference is
that the term ‘tiers’ is generally used to mean physically separate devices. A multi tier
system is therefore one that is deployed on multiple different nodes (computers).
Using multiple tiers is necessary when we want to make our applications distributed
and scaleable. For example, in a web-based banking system, the presentation layer,
which would be a web browser, would be distributed across all the users’ computers,
but the application layer would be running on a central computer, or multiple
 computers, somewhere at the bank. This tier would manage the business processes
such as checking accounts, transferring funds, ordering cheque books, etc. Also in
this layer would be the business objects such as accounts, customers, transactions
and statements. To cope with large numbers of users and to assist in security, the data
management layer would also be run on a separate machine (probably several). For
 complex, large-scale data storage like this, instead of simple flat files, we would use
a database management system for the four basic operations on data, namely create,
read, update and delete (CRUD for short). Once we start using large numbers of
 computers running different parts of the system across multiple tiers, we have an
n-tier architecture (see Figure 1.5). N-tier architectures are a fundamental part of web
 applications because the presentation layer (running in web browsers) is always widely
 distributed and the large number of users of some of these systems means that the
 business logic and data management layers may also have to be distributed across
 multiple machines.

The tiers of an n-tier web-based banking systemFIGURE 1.5

Multiple computers

Business Logic Tier

Multiple computers (many client
browsers)

Multiple computers

Data Management Tier

Presentation Tier

Create, read, update and delete
information in a database

Checking accounts, transferring
funds, ordering cheque books, …

Accounts, customers, transactions,
statements, …

Web browser view

Web based banking system

processes

concepts

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 12

The Web 2.0 and Ajax

Since the mid 2000s, it has been hard to discuss the World Wide Web without mentioning
the Web 2.0 and Ajax. Web 2.0 is a term that has become widely used since the first Web 2.0
Conference in 2004. Although it might be categorized as an umbrella marketing term
rather than a specific technology or architecture, some authors, notably (O’Reilly 2005),
have given it some concrete specifications through a set of published principles, practices
and patterns. Many publications that discuss the Web 2.0 focus on rich user interfaces, in
particular the use of asynchronous JavaScript and XML (Ajax), but the ideas of the Web 2.0
go beyond Ajax to include a wide range of ideas about how modern web applications should
be developed. The key ideas underlying the Web 2.0 may perhaps be summarized as:

● The web as a software platform
● Service-oriented architectures
● User and contributor communities

In this section, we briefly explore some of these ideas, which will re-emerge at various
points throughout this book. Above all, the role of the eXtensible Markup Language
(XML), which underlies service-oriented architectures, can be seen as an important
 component of many of aspects of the Web 2.0.

The web as a software platform

In the past, the software platform that applications were built on was a particular computer
operating system, for example Microsoft Windows or Linux. In contrast Web applications are
able to span multiple operating systems because web browsers can render the same content
regardless of the system from which the page was downloaded. The server may run on one
operating system and its clients on many others. One key Web 2.0 pattern is software above
the level of a single device, which is about the way that applications can span different types
of device, from web servers to desktop PCs to mobile phones to portable media players. For
example, to download music we might use a PC to connect to a web server and also connect
a mobile device to the PC, all using a single application. In this type of situation, the platform
that the overall application is running on is the web, not just a single device.

Service-oriented architectures

In the early days of the web, the focus was on the applications that were being used. For
example, the ‘browser wars’, primarily between Netscape and Microsoft in the mid 1990s,
were about which application would be used to access the web. More recently, the focus
has been more on the underlying content available via the web, rather than the specific
applications that are used. This content is made available using various forms of web service.
Web services are data sources made available over the web using the eXtensible Markup
Language (XML). Systems that are built by combining together multiple web services are
known as Service-Oriented Architectures (SOA). Examples of content that can be accessed
through web services include news, weather, map data, and book information.
Some authors use the term the programmable web to describe the ability to build applica-
tions that utilise content from multiple web-based resources, using freely available
 application programming interfaces (APIs) to create mashups. A mashup, in web terms, is
an application that mixes together content from different sources. Some mashups combine

1.7

1.7 THE WEB 2.0 AND AJAX 13

1

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 13

14 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

1

content from a number of different services to produce an overall application, while
 others use a single service but reorganize the content to suit their requirements.

One simple example of a web service is RSS (an abbreviation that has multiple roots:
Really Simple Syndication, Rich Site Summary and RDF Site Summary), which uses XML
to supply feeds of frequently updated information such as news and weather.

User and contributor communities

Traditional software construction is about building self-contained applications for a particular
purpose, for example to process a company payroll or manage company accounts. This
type of application is generally intended for ‘in house’ use, though it may expose certain
features to customers. For example, software used by banks is primarily used internally, but
may expose some web based services enabling customers to perform certain transactions
on their accounts. In many Web 2.0 applications, instead of this type of central control,
applications are about a community of users who participate in the application itself.
A good example of this is Wikipedia, an on-line encyclopaedia where anyone can create
or edit entries. Other applications may consist largely of content provided by a single
organisation but allow users to make some contribution. An example of this would
be music download sites that enable users to post their own reviews. Of course, opening
up a web application to contributions from the user community is not appropriate for every
system, but certain aspects of the approach to software development can be incorporated
into many different types of web application.

Ajax

Asynchronous JavaScript and XML (Ajax) is a term coined by Garrett (2005) in an article
about current trends in Web development. JavaScript is a programming language that can be
run inside a browser, making it possible to run programs that connect to the server while a
page is being viewed. We cover Ajax in more detail later in this book, but its relationship to
the Web 2.0 is primarily in the area of providing a rich user experience in the browser
 environment. At its simplest, Ajax makes it possible to update parts of a web page with data
read from a server without having to refresh the whole page, making the user experience more
like using a traditional desktop application rather than surfing a web site. There are many tools
for developing Ajax applications, some very sophisticated. However it is possible to include
some simple Ajax inside your web applications using a few lines of JavaScript code.

So you want to be a web application developer?

There are many challenges for developers in building web applications. There are choices
about technology that have to be made, choices about architecture, choices about design, and
choices about implementation. In making decisions about how to build web applications,
there are always compromises and trade-offs, and we have to be aware of the reasons for
 making certain choices and the consequences of them. Fortunately, there are also many tools,
techniques and reusable designs (design patterns) that can help us to meet these challenges.
The purpose of this book is to explore some important issues in the development of modern
web applications and provide some examples of how we might approach a solution, avoiding
as best we can the hype of this week’s technology while taking full advantage of the lessons
we can learn from others, and getting the best from the available technologies.

1.8

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 14

1

Exercises

1.1 In Figure 1.2, we saw some of the top-level domains in the Domain Name System.
Look up some of these domains by using a web search and find out what types
of organisation use, for example, the ‘int’ domain. Find some other top-level
domains that are not included in the diagram. For your web searches, you will
find the ICANN and IANA web sites useful (http://www.icann.org and http://
www.iana.org).

1.2 In our example of a layered architecture we referred to a word processor running
on a single machine. We compared this with a layered and tiered architecture,
using the example of a web-based banking system. However, web-based word
processors are becoming more popular. Do an Internet search and find some
examples of word processors that work on the web. From their descriptions, how
do you think the layers in the word processing example would be applied to
tiers in the context of a web-based word processor? You may find it helpful in
answering this question to spend some time using one of these web-based word
processors.

1.3 Look at the Wikipedia web site (http://www.wikipedia.org.).What are the processes
that you have to follow in order to add or modify an entry in this on-line ency-
clopaedia? There have been a few controversial problems with some entries
made on Wikipedia in the past. See if you can find some reference to these by
doing a web search, and see what policy changes were necessary in managing
the web site.

1.4 Find a popular blog on the web. Describe the author and content of the blog. Why
do you think this blog is popular?

1.5 One of the common features of portals is that they can be personalised. Find a web-
based portal that you can personalise (for example, http://www.yahoo.com). Make a
list of the things that you are able to personalise on this site.

1.6 A simple example of how Ajax can update the current page with data from the
 server is Google Suggest. Go to the Google Suggest home page (you can find this
with a Web search) and start typing a search term. The system suggests possible
searches as you type.

In this chapter we introduced the principal features, technologies and uses of web
 applications. These covered aspects of both the Internet and the World Wide Web, the
distributed architectures that web applications use and some special types of web appli-
cation. Table 1.1 summarises the various acronyms and shorthand terms that were
 introduced, along with their definitions.

SUMMARY

SUMMARY 15

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 15

1

Terms introduced in this chapterTABLE 1.1

Acronym/
term Meaning

Ajax Asynchronous JavaScript and XML

API Application Programming Interface

ARPA Advanced Research Projects Agency (originator of the ARPANet)

B2B Business to Business

blog Web log; a web-based diary intended for public access

CERN Conseil Européen pour la Recherche Nucléair, more generally known in English as
the European Organisation for Nuclear Research

CGI Common Gateway Interface

CRUD Create, Read, Update, Delete

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

FTP File Transfer Protocol

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

ICANN Internet Corporation for Assigned Names and Numbers

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISP Internet Service Provider

NCSA National Center for Supercomputing Applications

PHP Originally Personal Home Page Tools, later renamed PHP: Hypertext Preprocessor

PKI Public Key Infrastructure

RSS Really Simple Syndication, Rich Site Summary or RDF Site Summary

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol/Internet Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

Wiki WikiWikiWeb; a web site that is open to public contributions and editing

WWW or W3 World Wide Web

XML eXtensible Markup Language

16 CHAPTER 1 INTRODUCTION TO WEB APPLICATIONS

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 16

REFERENCES AND FURTHER READING 17

1

References and further reading

Garrett, J.J. (2005) Ajax: A New Approach to Web Applications. http://www.adaptivepath.com/
publications/essays/archives/000385.php

O’Reilly, T. (2005) What is Web 2.0: Design Patterns and Business Models for the Next Generation
of Software. O’Reilly Network, http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 17

Stobart-01.qxp:Stobart-01 11/7/07 6:13 PM Page 18

19

CHAPTER 2

Web Application Requirements:
Analysis and Design

LEARNING OBJECTIVES

● To understand some of the techniques used in analysing web application
system requirements

● To be able to use some notation from the UML related to web applications

● To understand some aspects of the processes involved in the development
lifecycle of web applications

● To be able to apply some common design patterns to the structure of
web pages

In this chapter, we look at some techniques for analysing the requirements for a web application. Some
of the notation used comes from the Unified Modeling Language (UML) with some special exten-
sions that were developed to meet the particular requirements of designing for the web. There are
also some informal diagrams that do not come from any specific notation. The process is based on
aspects of the Unified Process (UP), but with a lightweight ‘agile’ approach. We conclude the chapter
with some considerations relating to system design, and describe a number of web usability patterns.

What’s different about web application
requirements?

The development of a web application is similar in many ways to that of any other
 software system. We have to find out what the users require, choose an appropriate
 software architecture, design and build the overall framework and create all the necessary
components, all the while testing the evolving system against its technical and user

2.1

INTRODUCTION

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 19

20 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

 expectations and adapting to changing requirements and circumstances. In some ways,
however, web applications have their own special requirements. Perhaps the most obvious
is that web applications have a special kind of user interface. Their presentation may be via
many different types of device, ranging from desktop computers to mobile phones, and that
presentation is based on some form of web page running in a browser. Also, unlike many
software systems, a web application often caters for very large numbers of anonymous users,
potentially located anywhere in the world. This means that our design has to take account
of the issues of data communications and multiple access to the same resources. Its
 underlying communications protocol is based on the request–response model, where the
application is on a system that is remote from the user, and the user’s device has to make
requests of the application to perform activities on its behalf. This contrasts with desktop
applications, which may have a richer, more interactive and immediate interface. In building
such systems, we also have to be constantly aware that parts of our application will be
 running on central servers while other parts will be running on many different client
devices. All of these differences (and more) mean that we have to extend our understanding
of analysis and design to cater for all the special concerns of web applications.

Software development lifecycles

Although we have said that web applications have some special requirements, any develop-
ment method that we adopt needs to provide four services to support us during the project
lifecycle (the processes and events that take place between the project’s beginning and its end):

● It needs to guide us through the various activities.
● It needs to specify the artefacts (such as documents, diagrams and software

 components) that should be created during the development of the system.
● It should direct the tasks of the individuals and teams working on the project.
● It should provide appropriate criteria for measuring and monitoring progress and

 production.

To achieve these objectives, it needs to help the system developers to know their roles,
activities and workflows, and the final software products that they need to create. The way
that these features are defined does not have to be excessively prescriptive, particularly
for a small project. Many software development methods used from the 1990s onwards
stress agility, which in many cases means producing the simplest possible artefacts by
 performing activities in the simplest possible workflows. Regardless, most current methods
of software development use the concept of iteration which has gradually replaced older
methods based on the waterfall model.

The waterfall model

Early approaches to developing software systems tended to follow a traditional engineering
approach, whereby a system had to have all of its requirements gathered before it could be
analysed, be completely analysed before it could be designed, fully designed before it could
be implemented and only then could it be tested. This is known as the waterfall model
because the development process can be seen as a sequence of separate stages that occur
in a fixed order (see Figure 2.1). There is the notion of some feedback between adjacent
stages, so that we might revisit certain aspects of the design in the light of implementation,
for example, or rewrite code if it fails a test, but there is no concept of being able to cope
with evolving requirements or starting to test early in the project lifecycle.

2.2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 20

2

2.2 SOFTWARE DEVELOPMENT LIFECYCLES 21

This type of approach may work well in many engineering contexts but does not work so well
for most software projects. This is because the requirements for software tend to be more
fluid and dynamic, changing over time to respond to changing application environments. To
address this more flexible design process, iterative methods have been developed.

Iterative methods

An iterative approach is like a series of mini waterfalls, where we gather requirements,
analyse, design, build and test part of a system, reflect on it, adapt our plans in the light of
experience, and then repeat the process a number of times until the project is complete
(see Figure 2.2). Thus the feedback loop, which at any given point in the waterfall model

The waterfall modelFIGURE 2.1

Analysis

Design

Implementation

Testing

Feedback
and error
correction

Requirements
Definition

 Sequence
of activities

The iterative modelFIGURE 2.2

Requirements
Definition Analysis Design

Implementation Testing

Feedback, error correction, changes to requirements

Analysis Design Implementation Testing

Analysis Design
 Implementation

Testing

Requirements
Definition

Feedback, error correction, changes to requirements

Feedback, error correction, changes to requirements

Requirements
Definition

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 21

22 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

only includes the previous stage, covers all of the activities of analysis, design, implementation
and testing. As we progress through the iterations, the emphasis of our activities changes.
Initially, we focus mostly on requirements and analysis; later, we focus more on implemen-
tation and testing. The relative sizes of the boxes in Figure 2.2 are meant to suggest this
gradual evolution through the iterations.

When using an iterative approach we still have an overall vision and plan for developing the
system but we are more able to respond to new or changing requirements because we do
not assume that we can identify all the requirements up front. Many iterative methods
stress that each iteration should result in something concrete that provides a milestone for
the project. In other words an iteration does not end just because a time period has expired
but also because the required deliverable has been created. Iterative methods are also
 flexible in that their expected deliverables can be changed by trading off, in a managed way,
new expectations against the original ones. In other words, if additional expectations are
added to an iteration then an equivalent amount of effort has to be moved out of that
 iteration to enable the schedule to remain realistic.

The Unified Modeling Language and the
Unified Process

In the 1990s, there were many notations and processes proposed for the development of
object-oriented systems. So many, in fact, that the competition between the various
approaches during this period became known as the ‘method wars’. However, after a while
it became evident that three methods in particular were gaining more traction than most
of the others. These were the Object Modeling Technique (OMT) developed by a group
led by James Rumbaugh at General Electric, the Booch method developed by Grady Booch
at Rational Corporation, and Objectory developed by Ivar Jacobson at Eriksson. Largely at
the instigation of Grady Booch, these three methods were fused with input from other
methods when both Rumbaugh and Jacobson joined Booch at Rational. The first result of
this collaboration was the Unified Modeling Language (the UML) which was a standard
analysis and design notation for object-oriented systems. This standard language was pub-
lished by the Object Management Group, a non-profit industry standards organisation,
with the first version being finalised in 1999. Later, a design process (the Unified Process,
UP) was also published as a series of books, while a related set of tools and materials to
support this process (the Rational Unified Process, RUP) was developed by Rational, a
company since acquired by IBM. Although in book form the UP is not product related, it
is not currently supported by an open standards organisation.

The Unified Modeling Language (UML)

The UML is a very rich modelling language with many different types of diagram (18 in
version 2), some of which serve very similar purposes. For example, sequence diagrams and
communication diagrams can be used to represent the same information, and state dia-
grams and activity diagrams also have much in common. Therefore it is not necessary to
use all the available diagrams of the UML, but rather to select those that are most useful
for a particular type of project. State diagrams, for example, can be particularly helpful in
designing hardware control systems, whilst deployment diagrams are appropriate when a
system will be distributed across many different machines. Some methods that have

2.3

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 22

2

evolved since the publication of the UML choose a specific subset of diagrams. Iconix, for
example, uses only four types of diagram: the use case model, the sequence diagram, the
class diagram and the (otherwise little used) robustness diagram (Rosenberg et al. 2005).
We adopt a similar approach in this book, selecting a small number of useful diagrams
from the UML along with some extensions developed specifically for designing web
 applications.

The Unified Process (UP)

The Unified Process is, like the UML, a rich specification with many possible activities and
artefacts. Once again, we can tailor our use of the process to the practices most appropri-
ate for our application type. As Jacobson himself has written about the RUP, it ‘has grown
and become too complex’, so it’s OK to simplify it (Jacobson 2004). Perhaps the most
important aspect of the UP is that as well as using an iterative approach it describes both
phases and disciplines. A phase is a group of iterations that fall within a specific time peri-
od within the overall project life cycle, while the disciplines are the various types of activ-
ity that take place during each iteration. The overall approach of the UP is neatly summed
up by a commonly used ‘whale diagram’ that shows the relationship between iterations,
phases and disciplines (see Figure 2.3). The ‘whales’ are the curves that show the level of
activity in each discipline at various stages of the development process. Although the image
is just an example of how the various activities in a project might move in and out of focus
over time, it gives a clear idea of how an iterative process changes its emphasis as it moves
through the various phases. This equates to the iterative model in Figure 2.3. To make
sense of the rest of the diagram, we look at the four phases of the UP, which appear across
the top of the diagram, and the iterations that occur within them.

2.3 THE UNIFIED MODELING LANGUAGE AND THE UNIFIED PROCESS 23

The Unified Process ‘whale’ diagramFIGURE 2.3

Disciplines

Bussiness Modeling

Requirements

Analysis and design

Implementation
Test

Deployment

Project Manage ment

Configuration
and Change Mgmt

Environment

Phases

Iterations

Inception Elaboration Construction Transition

Initial Elab #1 Elab #2 Const
#1

Const
#2

Const
#N

Tran
#1

Tran
#2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 23

The inception phase

During the inception phase, we explore a project to a sufficient stage to understand if it is
viable. This means gathering the initial requirements, investigating relevant technical issues
and building software prototypes where necessary to act as proofs of concept. During this
phase, new technologies and frameworks may be investigated to evaluate whether or not
they would be good choices for the project in hand. At the end of the inception phase, we
should have enough information to know whether the project as a whole has a realistic
chance of success, and we should also have a draft plan for the entire project, including a
total budget and an overall time frame. The disciplines of the UP show that during this
phase we also have to establish the development environment and processes to manage
software configuration and change. For a simple project, or one that is treading familiar
ground, a single iteration may be sufficient for this phase. For large projects or those that
involve substantially new technology and tools, more iterations will be required. At the end
of each iteration, a specific milestone should be met and a meaningful deliverable should
result. For example, an iteration in the inception phase might be required to deliver a
working proof of concept using a particular code framework, application server and
 database, along with a project plan and a budget. Experimental proof of concept prototypes
are sometimes known as spikes (Cockburn 2005).

The elaboration phase

In many ways, this is the most important phase as it demonstrates the viability (or not) of
the chosen software architecture. The most important deliverable from the elaboration
phase is an executable architecture, which we can think of as being similar to the founda-
tions and load bearing structure (framework) of a building. Although it may take fewer
people and less time for a building’s foundations to be laid and its steel skeleton to be built,
when compared to the time and labor required to complete all the cladding, internal walls
and fittings, it is a more crucial phase. The foundations and framework need to be able to
support all the subsequent work or the building will collapse, like many a software project
has in the past. In a software project, the executable architecture must provide a suitable
foundation and framework for all the subsequent development, so it must meet all the
most important requirements of the project and have addressed its key risk factors. For
example, if a project has specific requirements in terms of performance, such as the number
of concurrent users that it should be able to support, then the executable architecture
should have demonstrated that it can deliver this requirement. Therefore practices such as
load testing are important in the elaboration phase. Although the executable architecture
can be regarded as being based on a prototype, it is an architectural prototype, which
means that it is intended to be refined until it is put into production. This is different from
the proof of concept prototypes that are often developed during the inception phase and
discarded once they have performed their roles of demonstrating or testing alternative
approaches. Rather than a spike, the executable architecture is a walking skeleton, the
beginning of the framework that will endure throughout the rest of the system lifetime
(Cockburn 2005). Due to the importance of this phase, there may be several iterations.

The construction phase

In this phase, all the necessary components are added to the existing executable architec-
ture. This is like adding the cladding, internal walls and fittings to a building. During this
phase, there may be some minor changes to the executable architecture due to new or
changing requirements, but its core functionality should be stable. However we should be
able to be very flexible in terms of the components that we are developing within the
framework. At the end of the construction phase we should have a complete software

24 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 24

product that is ready for alpha testing. Unless the project is small, there will be many
 iterations in the construction phase.

The transition phase

In this final phase, the system moves from the development environment into its deploy-
ment environment, at the end of the phase, it should be in use. Activities from this phase
can include alpha, beta and acceptance testing, installation, manufacture (in the case of
shrink-wrapped software), parallel running and user training. We might regard this phase
as being similar to the handover of a new building to its owners. The number of iterations
will depend on the type of project and its means of construction. For example, an open-
source project that will deploy on the web could easily have a transition phase with a
 single iteration, while a large custom-built system for a client with many sites running
 mission-critical systems would require more iterations. Figure 2.4 matches the building
metaphor to the phases of the UP.

How long is an iteration?

In our discussion of phases, we made no mention of how long an iteration should be. The
general practice is to make all iterations a similar length, so that the project gets its own
rhythm. How long each iteration should be is open to debate, but something around four
weeks is common and anything from two to six weeks is reasonable. Anything less than two
weeks is unlikely to be long enough to produce a meaningful milestone, while iterations
longer than six weeks may lead to a lack of project rhythm and not provide the project as
a whole with enough milestones to keep it on track. Within an iteration there will also be
‘time-boxed’ activities that have their own internal deadlines based on estimations of effort
and duration. The difference between effort (how much consistent effort it would take in
an ideal world to produce a required artefact) and duration (how long it actually takes) is
due to the realities of distractions such as meetings, holiday, illness, fire alarms and a whole
host of other time-consuming events and activities. Various techniques can be used to estimate
the actual time required for each task, but the best way is just to learn by experience how
long a particular task will take. Definition of tasks may be done by use cases, or user
 stories, and with experience these can be written with a given scope in mind. Of course
the number of iterations multiplied by the length of an iteration gives how long you plan
the whole project to take.

2.3 THE UNIFIED MODELING LANGUAGE AND THE UNIFIED PROCESS 25

2

The phases of the Unified Process applied to a building metaphorFIGURE 2.4

Inception
phase

Elaboration
phase

Construction
phase

Transition
phase

Plan and
experiment

Construct
the
architecture

Add all
the detail

Hand over
to the new
owner

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 25

A web application inception phase

In the rest of this chapter we will look at some activities that might be appropriate during
the inception phase. Taking the diagram in Figure 2.3 as a rough guide (while acknowledging
that this is not meant to indicate anything other than a general impression of the process),
we can see that we might expect this phase to include some initial analysis and design, as
well as business modelling and requirements gathering. In fact, we might regard most of this
book as describing activities that are appropriate to the inception phase, in the sense that we
will be exploring technologies that may be new to you and demonstrating some simple proof
of concept code. As Figure 2.3 suggests, we will be doing some coding, some testing and
quite a bit of exploration of a software environment. None of the application code in this
book is quite sophisticated enough to be regarded as an industrial-strength architectural
 prototype; in fact, it could be regarded as a series of spikes. However it should provide
enough material to enable a more extensible framework to be built. Taken together, it builds
into something that could be regarded as a walking skeleton for further development.

The intention of the examples that we work through in the rest of this chapter is to give
some flavor of how the initial business modelling and analysis process is one of investigation
and discovery, where we continually revise our initial assumptions in the light of experience
and experiment. Therefore you will see that we do not present something that is seen as
 initially perfect; rather, we present a starting point that we refine as we further explore the
requirements and utilise the various analysis tools and techniques. Software development is
essentially a team effort where individual skills and relationships are crucial, something that
is hard to replicate in book form. Therefore you should regard the following examples as
artefacts that would evolve through a process of negotiation and discussion, rather than there
being one ‘right answer’. Every software problem has a number of potential solutions, each
with their own advantages and disadvantages. One other thing is for sure, every real-world
software project is far more complex than it may at first appear!

Modelling requirements

The first step in developing any web application must be to establish the business objec-
tives (part of the business modelling discipline of the UP). There was a time in the ‘dot
com’ boom of the 1990s when web-based systems were developed with little realistic idea
of the business objectives apart from the fact that everyone else already had a web site so
‘we need one too’. Times have changed, so now there is more focus on aspects such as
return on investment (ROI). A good focus for discussing the business objectives is to agree
on a mission statement for the application, which neatly summarises the point of the exercise.

In this book, we use a simplified case study based on a home insurance web application.
This is a fictional scenario within which we will analyse and design our system:

Web Home Cover is a new enterprise set up to provide home insurance over the web.
The business case is based on providing a service that is entirely on-line and therefore
highly efficient in terms of the initial capital investment required by the insurance
 company. Since the company will only operate via the web, it must have a web
 application that meets the needs of all its customers and staff. It must also be written
to ensure that it will work for as many web clients as possible, from desktop computers to
mobile devices.

2.5

2.4

26 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 26

This is a possible mission statement for the project:

To bring home insurance services to every corner of the web

This is the essence of the business case for our home insurance web application. It is short
and to the point. Long ‘buzzword bingo’ phrases are best left out of the mission statement.

Web application requirements gathering

The first step we must take on the road to actually building a web-based solution is to
 identify the high-level requirements (or business objectives) of the proposed system. This
is rather difficult in many cases, since we may not know who our actual users will be. If
the web application is intended for a company intranet (an application that is used only
internally within the organisation), then it will be quite easy to find out who the potential
users of the system are. If, however, we are launching an e-commerce web site then we are
aiming our application at a largely unknown mass of users in cyberspace. How, then, can
we work out what their requirements might be? There are a number of approaches we can
take. One common approach is to use focus groups, where a small number of people who
are representative of our possible user base are brought together to answer questions and
offer opinions in a structured and controlled context, using sample materials. Another
approach is to use marketing staff to take on the role of possible users and represent their
requirements, presumably on the basis that their job is to tell people what they want. In
either case, we need to develop a set of user profiles that will give us an idea about whose
needs we are trying to meet. These user profiles can be simple demographic summaries
(e.g. the age range, sex, interests, average income, etc. of our expected users) or rather
more sophisticated ‘personas’ where fictional biographies are developed of our supposed
typical users. Whoever we use to represent our actual users, at some point we need to gather
a suitable set of stakeholders (those who have an interest in the system, either directly or
indirectly) into a room and get them to write down an initial set of requirements in an
activity known as a joint requirements workshop. This does not require sophisticated tools,
the usual ones being flip-chart pads or whiteboards and pens. Instead of the usual brain-
storming approach, card storming might be used to encourage full participation. Whereas
with brainstorming the participants take turns to call out their contributions, which can be
frustrating for some and intimidating for others, in a card-storming approach everyone
simultaneously writes each of their contributions on a separate card. The cards are all
pooled and then explored together by the group. Experience suggests that the ‘magic’
 number of core requirements likely to emerge from such sessions is 12 (more or less),
though it depends on the level of detail that you want to aim for.

We now imagine a requirements workshop for the Web Home Cover project. Who might
our stakeholders be? For our purposes, we might imagine a group comprising the lead software
developer, the project manager, the database administrator, the marketing person who ran
the focus groups (armed with a set of user profiles), the sales manager, a claims assessor
and one of the insurance underwriters. By the time all the doughnuts have gone, the flip-
chart pads on the wall have a list of requirements that looks something like this:

1. New users should be able to get an instant quote for buildings insurance.

2. New users should be able to get an instant quote for contents insurance.

3. New users should have the option to apply for both, or either, type of home
 insurance cover.

2.5 MODELLING REQUIREMENTS 27

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 27

4. Policy holders should be able to check their current policies and request changes
using a secure login.

5. New users should be able to check the status of their application using a secure
login.

6. Call-centre staff should be able to view and query all policy details using a secure
login.

7. Underwriters should be able to access all applications waiting for processing using a
secure login.

8. New users should be able to retrieve previous quotations immediately, even if they
have not yet applied for a policy.

9. The web site should provide enough information for users to contact the company
by email, telephone or in writing.

10. Users should be able to access the system from both desktop and mobile devices.

11. Policy holders should be able to make claims against their policies.

12. The system should be available 24/7/365 and be able to cope with 10,000 concurrent
users.

13. The system should have a telepathic user interface.

There are some things to note about this set of requirements. First, while most of them are
functional requirements (what the system should do), some are non-functional (the way
that the system should do what it does). For example, a functional requirement is that
‘new users should be able to get an instant quote for buildings insurance’. This is something
the system must do for its users. Examples of non-functional requirements are the ability
to access the system from multiple devices or being available all the time. These are not
things that the system does but characteristics of how it delivers those things. Some
requirements need further exploration, for example the last two are somewhat extreme
but are meant to indicate some important considerations. While it may be desirable for a
system to be available all the time, we must consider how much it costs to do this versus
the real need. Likewise, the requirement includes an optimistic prediction of the possible
number of concurrent users. We have all heard of a few web sites that were so popular that
they quickly imploded under the strain of serving all their users. However the history of
the dot com era had rather more examples of systems that anticipated huge numbers
of users but ended up with a trickle. Performance, availability and security requirements,
should always be looked at carefully by applying a cost-benefit analysis. For each require-
ment, we have to ask how much it would cost for the ‘perfect’ solution as opposed to
an acceptable solution. The ‘telepathic user interface’ requirement comes from a Dilbert
cartoon, but again has a serious point, which is that requirements often use arbitrary
requests such as ‘the interface must be user friendly’ which are, in fact, meaningless.
Requirements must be both realistic and measurable. Proposing a system that must pass
certain usability or learnability metrics (measures) would be more useful.

Prioritising requirements

Once we have a set of initial requirements, we need to prioritise them. This is important
in an iterative development approach because we have to schedule the requirements over
different iterations. Therefore if requirements will be delivered at different points in the
development lifecycle then we should address the more important requirements first,
 particularly since new requirements may appear during the process. If any requirements

28 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 28

get pushed to the back of the queue by this process then they should be those with a lower
priority. It is not necessary to put all the requirements in order. In many cases, four levels
of priority are considered acceptable, sometimes classified as:

● Must have
● Should have
● Could have
● Want to have

This prioritisation method is sometimes referred to using the acronym MoSCoW.

One useful approach to the prioritisation exercise is to have the participants vote for their
requirements in two rounds from different perspectives, possibly using some multiple
 voting mechanism (such as the participants having four votes each). For example, round 1
could prioritise requirements from a customer viewpoint and round 2 could prioritise the
requirements from the viewpoint of the staff.

Since it is difficult to cast a vote while in the context of a text book, we will have to assume
that we have performed this exercise and come to some conclusions. Bearing in mind our
mission statement, it would appear that the following requirements are ‘must haves’.

1. New users should be able to get an instant quote for buildings insurance.

2. New users should be able to get an instant quote for contents insurance.

3. New users should have the option to apply for both, or either, type of home
 insurance cover.

7. Underwriters should be able to access all applications waiting for processing using a
secure login.

10. Users should be able to access the system from both desktop and mobile devices.

11. Policy holders should be able to make claims against their policies.

With these requirements in place we can sell insurance over the web and reach as many
people as possible.

What are the ‘should haves’? These are still pretty much core functions. Perhaps the
 following requirements fall under this category:

4. Policy holders should be able to check their current policies and request changes
using a secure login.

6. Call-centre staff should be able to view and query all policy details using a secure login.

9. The web site should provide enough information for users to contact the company by
email, telephone or in writing.

With these requirements we can help retain and support our existing customers and pro-
vide maximum opportunity to attract new business.

The following requirements are probably best categorised as ‘could haves’:

5. New users should be able to check the status of their application using a secure login.

8. New users should be able to retrieve previous quotations immediately, even if they
have not yet applied for a policy.

2.5 MODELLING REQUIREMENTS 29

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 29

We can live without these, but they could provide some benefit to our users. They might
be regarded as ‘sugar’ (handy but non-essential).

These are our final two requirements:

12. The system should be available 24/7/365 and be able to cope with 10,000 concurrent
users.

13. The system should have a telepathic user interface.

These will have to be put into the ‘would like to have’ category, at least for the moment.
They certainly need some further work before being taken seriously as priority requirements.

What is the point of this exercise? It enables us to schedule the important requirements
first when developing the system. Agile approaches would use ‘story cards’ for require-
ments, with each card representing a user story about what the system should do. By
 prioritising these cards, we can put them into various iterations, with the most important
in the early iterations.

Analysis tools – domain models, use cases and
storyboards

In this section, we introduce some basic UML notations that can help us to visualise key
 features of the application. Even if a development project takes an agile approach that does
not worry about extensive formal documentation, using standard notations for descriptive
sketches can be very useful as a common communication medium between developers
and users.

The domain model

A useful model to build before getting into details about the system use cases is a domain
model that captures the key concepts of the business domain. The domain model helps us
to begin to understand how various important concepts of the domain interact in a struc-
tural way. Again, we should develop the domain model in a workshop environment. Some
analysis methods suggest that the domain model should grow piecemeal out of the use case
analysis, but the advantage of developing the domain model early is that it provides a com-
mon vocabulary within which the following stages of the analysis can take place. This
ensures that, for example, different threads of the analysis do not end up using two differ-
ent names for the same concept because everyone can work from, and enhance, the same
domain model. The model itself captures a few simple ideas:

● What are the key concepts in the domain?
● Which concepts interact with each other?
● How can we describe these interaction relationships?
● What is the cardinality of these interactions? (In other words, which relationships are

one to one, which are one to many and which are many to many?)

We can begin to identify the core concepts in our domain by identifying nouns in our core
requirements. From our set of objectives, we can find 27 nouns (plural nouns have been

2.6

30 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 30

2.6 ANALYSIS TOOLS – DOMAIN MODELS, USE CASES AND STORYBOARDS 31

2

made singular) that can be our candidate list of concepts for the domain model. We might
imagine them brainstormed onto a whiteboard or card-stormed onto sticky notes and then
stuck on the wall (see Figure 2.5).

From this list, we can exclude anything clearly outside the system boundary (desktop,
 telephone, writing), the boundary itself (user interface) or nouns that refer to the system
as a whole (web site, system). We should also get rid of synonyms (‘user’ and ‘concurrent
user’ are general words for more specific types of user; ‘quote’ and ‘quotation’ are the same
thing) and properties of other concepts (policy detail is a property of policy), though prop-
erties can be added to their matching concept if they look useful. ‘Detail’ is a very vague
property of a policy but ‘status’ might be a useful property of an application so we might
choose to include it in the diagram. In the revised list (see Figure 2.6), we have struck out
twelve of the candidate concepts, leaving fifteen (including the ‘status’ property).

From these, we draw an initial domain model (Figure 2.7). This consists of rectangles for
each concept, labelled with the concept name. Any properties that are immediately evi-
dent can also be added, separated from the concept name by a horizontal line. Concepts
that have some kind of relationship with one another are linked by ‘association’ lines, which
are labelled with text that describes the association. Arrow heads by the text can be used
to show the direction in which the label should be read (for example, we are saying that a
policy holder lives at an address, not that an address lives at a policy holder). By default,
an association line implies that the cardinality of the relationship is ‘one to one’, for example
there is one policy holder to one address. To show a ‘one to many’ relationship, we use the
asterisk (*); for example, one policy can have many claims made against it. If the asterisk

Candidate list of concepts for the domain modelFIGURE 2.5

New User

Quote

Buildings
Insurance

Contents
Insurance

Policy
Holder

Status

Policy

Change

Secure
Login

Policy
Detail

Application

Quotation

Call Centre
Staff

Web Site

Information TelephoneWriting

System
Mobile
Device

User
Interface

Claim

Concurrent
User User

Company

Desktop

UnderwriterEmail

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 31

32 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

appears at both ends of an association then this means a ‘many to many’ association. In our
domain model, one call-centre staff member may query many policies, and a single policy
may be queried by many call-centre staff members. Occasionally we can define a cardinal-
ity number or range more exactly. For example we know that a policy holder will have
either exactly one policy (buildings OR contents insurance) or exactly two policies (both
buildings AND contents insurance).

Sometimes we identify concepts that appear to be specialisations or generalisations of one
another. In our model we have policies, but we also have references to contents insurance
policies and buildings insurance polices. The concept of a policy here could be seen as a
 generalisation of the two more specific (specialised) types of policy. We indicate this in the
domain model using an arrow with an open triangular head pointing from the specialisations
to the generalisation. Initial assumptions like this in the domain model may be modified
later. We may find that the policy generalisation is not useful. Alternatively, we may find
that we need a generalisation of new user and policy holder, the user concept that we
 previously discarded. These kinds of decision are made as we evolve the analysis domain
model into a design class model, as the process of iterative analysis and design gives us more
information about the concepts in our model. A class model shows concepts that will
become software artefacts in the implementation. Some concepts will not become classes,
whereas many new classes will be introduced as the need for them becomes evident.

Now that we have a domain model, we can use it as a guide in the use cases. For example
there should be no ambiguities about whether we should use the concept name ‘quote’ or

Modified list of candidate conceptsFIGURE 2.6

New User

Quote

Buildings
Insurance

Contents
Insurance

Policy
Holder

Status

Policy

Change

Secure
Login

Policy
Detail

Application

Quotation

Call Centre
Staff

Web Site

Information
Telephone Writing

System
Mobile
Device

User
Interface

Claim

Concurrent
User User

Company

Desk Top

Underwriter Email

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 32

‘quotation’ in the use cases: we check the domain model and use ‘quote’. At this stage, it
is useful also to start building a glossary for the system (on a web page, of course) to define
our interpretation of what these concept names mean.

Use case diagrams

Use case diagrams are very simple. They help us to show the different types of users and
the goals they have in using a system. Because they are an analysis tool they do not anticipate
any specific type of technology or how the system will actually deliver its requirements.
All they do is specify what those requirements are (in a very broad way). Figure 2.8 shows
the notation for the main component types in a use case diagram.

As you can see, there are only three: the actor, the use case and the system boundary. Use
cases are inside the system boundary and actors are outside. Arrows are used to indicate
which actors use which use cases. It is important to note that actors do not represent
 individual people, rather they represent different roles that people can take when using the
system. In some cases, the same person might take on different roles at different times.

2.6 ANALYSIS TOOLS – DOMAIN MODELS, USE CASES AND STORYBOARDS 33

2

A domain model for the home insurance systemFIGURE 2.7

uses

Policy

Holder

Quote

Address

Contents
Insurance

Buildings
Insurance

Policy

Claim

holds

lives at

made

againstmakes

gets

*

1..2

*

New User

makes

Application
made
for status

Change

requests

made to

Underwriter

checks

acquired

for

Email

sends sends

Secure Login
uses

Companycontacts contacts

Call Centre
Staff

views/
queries

*

* *

*

*

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 33

34 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2
In our system, for example, a person my be a member of the call-centre staff but may also
apply for insurance as a new user. Similarly, new users change into policy holders if
their policy applications are approved. In addition, actors are not always roles taken by
 people. They can equally be representative of other systems or manual processes. For this
reason, we sometimes see the arrows going out from a use case to an actor representing an
external system.

Actors and use cases describe roles and goals. Each actor should be named using a noun that
describes a user role, as opposed to an individual, for example ‘policy holder’. Each use case
should describe a user’s goal in using the system, so they should be named using verb phrases
(e.g. ‘Apply for policy’). Although in some cases there may be a one-to-one correspondence
between a use case and a requirement, a single use case may also meet more than one
requirement. You will see an example of this in Section 2.7.

Figure 2.9 shows a use case diagram taken from the functional requirements we listed in
our workshop. Note that we have five actors taken from our requirements: new user,
 policy holder, call centre staff members, claims assessor and insurance underwriter. There
are eleven use cases. Note how some actors have associations with more than one use case.

Use case realisation

Once we have decided on what our use cases should be, we have to find some way of
 showing what happens inside them. This is known as a use case realisation. There are a
number of different notations that we can use to do this, ranging from simple text descrip-
tions to various diagrams. Here, we introduce some sequence diagram notation from the
UML along with some informal storyboarding. Since we are designing a web application,
the realisation is specific to an environment where the actors interact with page-based
 presentations. Sequence diagrams capture user interaction with the system, while story-
boards are useful for modelling page-based systems because they provide a simple way of
describing the page flow and alternate paths that are typical of web applications. They can
also be used to informally describe the layout and content of web pages. To link web pages
and our UML diagrams we can use the web application extensions (WAE) to the UML for
designing web-based systems (Conallen 1999). These are a special set of icons that can be
used in UML models to represent components that are specific to web applications, such
as web pages.

Use case descriptions

Before embarking on drawing diagrams, however, we begin by writing a textual description
of each use case that summarises the sequence of interactions that the actor has with the
system. It will also capture any selections or iterations that take place. The nature of these
textual descriptions varies from project to project, and some suggested formats and

Use case diagram notationFIGURE 2.8

Actor

System boundaryUse case

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 34

 contents are much stricter and more complex than others. The approach we suggest here
is to keep things simple but to number each interaction. This makes it easier to ‘plug in’
alterative sequences of events. The style of a use case description is conversational, that is,
it describes a series of actor requests and system responses, in pairs.

As an example, we begin with the ‘Get buildings insurance quote’ use case. In the text
description, we capture some important information:

● The name of the use case
● The actor(s) that use it
● The start page (this is specific to a web application)
● A brief description of what happens in the use case.

Use Case Name: Get buildings insurance quote

Actors: New user

2.6 ANALYSIS TOOLS – DOMAIN MODELS, USE CASES AND STORYBOARDS 35

2

A use case diagram for the home insurance web applicationFIGURE 2.9

Get buildings
insurance quote

Get contents
insurance quote

Check current
policies

Request change
to current

policies
Check

application status

View policy
details

Access
applications for

processing

Retrieve
previous
quotations

Contact
Company

Make a claim

New
user Policy

holder

Call-centre
staff/member

Insurance
underwriter

Apply for policy

Claims
assessor

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 35

36 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Start Page: Home page

Use Case Description:

1. The actor chooses to get an insurance quote.

2. The system requests the actor’s personal details.

2. The actor enters his/her personal details.

4. The system displays a choice of available insurance quotes.

5. The actor chooses to get a buildings insurance quote.

6. The system requests information about the building to be insured.

7. The actor enters data about the building.

8. The system displays the buildings insurance quote.

System sequence diagrams

Now that we have a textual description of the use case, we can draw a system sequence
diagram. This shows the interactions between the actor and the system in a notation from
the UML.

The components of a system sequence diagram are the actor for the use case, the compo-
nent(s) that they interact with, labelled arrows showing the messages that pass between
the actor and the other components and a vertical time axis. In fact, it is possible to
draw sequence diagrams with a horizontal time axis but this is not usually supported by
software tools. The component type that an actor interacts with is known as a boundary
object, because it exists on the boundary between the system and the actors.
A boundary object is usually some kind of graphical interface component. In a web
 application, this will be displayed on a web page. The UML notation for a boundary object
is shown in Figure 2.10.

Our system sequence diagram is shown in Figure 2.11.

Designing pages and webflow with storyboards

If you have seen system sequence diagrams before, you may notice that the one in
Figure 2.11 is a bit different from the norm in that it indicates the forms and pages
 displayed by the system interface boundary object. In a web application, the interaction
is via series of pages, so the view of the system from the actor perspective is based on
pages. By using the style of sequence diagram in Figure 2.11, we can begin to explore the
pages and their sequences that will be used in the storyboards. The sequences of pages that
appear in a use case are sometimes known as a webflow, which is simply a use case
 workflow that uses a series of web pages to achieve its goal.

UML notation for a boundary objectFIGURE 2.10

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 36

Since our interactions are with a web application, via web pages, we will utilise the
web page icon from the UML web application extensions in our sequence diagram
(see Figure 2.12a). Web pages are ‘architecturally significant components’ that exist both in
the analysis and design models and the coded system (Conallen 1999). The pages may be
coded in mark-up (e.g. HTML) or a programming language (e.g. PHP). Using the formal
symbols can be useful in documentation and artefacts created in software packages.
However, when informally working through the analysis on paper or whiteboards, it is
often easier just to use stereotype labels to indicate components such as web pages (see
Figure 2.12b). Whether you use symbols or stereotypes is up to you, and the symbols do
not have to be exact. Indeed, Conallen himself uses different versions of the symbols in
different published sources (see (Conallen 1999) and (Conallen 2001)).

Having outlined the user interaction in the system sequence diagram, we might usefully
draw a first cut of a storyboard, representing the pages that are accessed during the use
case (see Figure 2.13). For this initial storyboard, we describe only the page names, the
navigation routes and the events that trigger the transitions between pages.

Because storyboarding is an informal design tool, there is little consensus on notation, style
or even when it should be done. Some developers suggest that you can create an entire
web-site storyboard in one step. Whilst this can work for simple sites that are mostly
 static content, more dynamic and complex web applications require a more incremental
approach. Therefore we suggest the approach of developing a storyboard for each use case.
Eventually, all the storyboards can be collected together to summarise the navigation paths
of the entire web application.

One option for a storyboard is to define the types of page using the UML extension
 symbols for client pages and forms (see Figure 2.14) rather than using the generic web page
icon from Figure 2.12.

2.6 ANALYSIS TOOLS – DOMAIN MODELS, USE CASES AND STORYBOARDS 37

2

A system sequence diagramFIGURE 2.11

Insurance
quote
interface

Enter personal details

Select get quote

Select buildings quote

Enter building details

time

Show personal details form

Show insurance choice form

Show buildings details form

Show insurance quote page

New user

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 37

38 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Note that in this notation, we normally use the form icon as a composition component of
a client page (the black diamond indicates that the page is partly composed of the form).
However if we follow the one-form-per-page usability pattern (Graham 2002), also known
as button gravity because it puts the emphasis on a single ‘Submit’ button on each page,
then we can dispense with the separate page icon and use the form icon to represent a
 complete form page.

Looking at each page in turn, we might define the home page and buildings quote page
using the ‘client page’ icon, whereas the others use the ‘form’ icon. There is no require-
ment to use these symbols, but they can help to visualise a typical webflow, which will
frequently start from a client page, then move through one or more form pages, gathering
data in a ‘wizard’ style, and finally arrive at a summary page that shows the user the result
of the webflow (Figure 2.15).

Building further use cases

So far, so good. We have written a use case realisation for the ‘Get buildings insurance
quote’ use case and we have a simple storyboard. As we are performing analysis activities
we have made no attempt to consider data types, page layout, component types or any

2.7

A simple storyboardFIGURE 2.13

Select
get
quote

Personal
details
submitted

Buildings
insurance
selected

Building
details
submitted

Home
Page

Personal
Details Page

Insurance
Choice Page

Insurance
Quote Page

Building
Details Page

UML extension symbols for (a) a client page and (b) a formFIGURE 2.14

a b

The UML extension symbol for a) a web page and b) its stereotype
equivalent

FIGURE 2.12

« web page »

ba

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 38

other aspect that would be considered a design activity. Now we move on to the ‘Get
 contents insurance quote’ use case. We could, of course, start writing a separate use case
description, but it would soon become obvious that we start off in exactly the same way,
by gathering the user’s personal details and offering a choice of insurance quotes. How do
we progress? We might consider adding a use case to gather the user’s personal details,
which we then progress from to create the two use cases for different types of insurance.
However, this implies that getting the two types of insurance quote are exclusive acts. Do
we want a user to have to go through two separate use cases if they want both contents
and buildings insurance? Once we begin to think about this, it becomes clear that we don’t
really want two separate use cases for the two types of insurance. In fact we want one use
case (‘Get insurance quote’) that is flexible enough for the user to be able to get a build-
ings insurance quote, a contents insurance quote, or both. In other words, we have one use
case that meets two requirements. With this in mind, let’s revisit our existing use case and
consider the need for alternate flows.

An alternate flow occurs when the activities in a single use case may take different paths
depending on some condition. In this example, the condition is the user’s choice of insurance.
Here is a modified use case description for the renamed ‘Get insurance quote’ use case.

Use Case Name: Get insurance quote

Actors: New user

Start page: Home page

Use Case Description:

1. The actor chooses to get an insurance quote.

2. The system requests the actor’s personal details.

2. The actor enters his/her personal details.

4. The system displays a choice of available insurance quotes.

5. The actor chooses to get a buildings insurance quote.

6. The system requests information about the building to be insured.

7. The actor enters data about the building.

8. The system displays the buildings insurance quote.

Alternate flow – contents insurance only

5a. The actor chooses to get a contents insurance quote.

6a. The system requests information about the contents to be insured.

2.7 BUILDING FURTHER USE CASES 39

2

Page types for the ‘Get buildings insurance quote’ storyboardFIGURE 2.15

Select
get
quote

Personal
details
submitted

Buildings
insurance
selected

Building
details
submitted

Home
Page

Personal
Details Form

Insurance
Choice Form

Insurance
Quote Page

Building
Details Form

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 39

7a. The actor enters data about the contents.

8a. The system displays the contents insurance quote.

Alternate flow – both types of insurance

5a. The actor chooses to get both a buildings insurance quote and a contents insurance
quote.

6, 7, 6a, 7a

8b. The system displays a contents insurance quote, a buildings insurance quote and a total.

With a modified use case, we need a modified system sequence diagram. This can be seen
in Figure 2.16. There is an important addition to the notation in this diagram to show
 selection between alternate flows. There has historically been a degree of confusion and
lack of clarity about this in the UML, but we usually show conditional statements by using
square brackets, for example, [Select buildings quote OR select both quotes]. In our
 diagram, we then use a larger square bracket to indicate the set of operations that are part
of that conditional block. There are some more complex notations but they do not add
much value over this simple version.

As well as an updated system sequence diagram, we have a modified storyboard that shows
the alternate flows. In this version, we also use the two icons for client pages and forms to
emphasise the ‘wizard’ style webflow of a series of forms for user input (Figure 2.17).

40 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

The modified system sequence diagramFIGURE 2.16

Insurance
Quote Boundary
Object

Enter personal details

Select get quote

[Select buildings quote OR select both quotes]

Enter building details

time

Show personal details form

Show insurance choice form

Show buildings details form

Show insurance quote page

New user

[Select contents quote OR select both quotes]

Enter contents details

Show contents details form

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 40

From analysis to design

So far we have touched on the key stages of the requirements gathering and analysis processes
for developing a web application by exploring some aspects of a single use case. In the last
part of this chapter, we introduce some concepts related to moving from analysis to design.

In an iterative process, the transfer from analysis to design can be seamless, simply a
 matter of continually adding more detail. However the level of documentation that we use
in the analysis discipline has the important characteristic of being largely non-technical and
understandable by non-developers. As such, analysis documents such as use case diagrams
and storyboards can be directly used in discussions with customers and potential users. As
we move into design, we begin to move away from diagrams that are readily understood by
those outside the development team and move either into more detailed diagrams that
clearly reflect the chosen tools and techniques of implementation or, if using an agile
approach, simply embody the emergent design in the code itself.

Design is technology-aware

Requirements analysis is about defining the problem domain and specifying how we
 anticipate that the system will be used from the user perspective. From this viewpoint, it
is technology-agnostic, meaning that we do not have to know about the technology used to
solve the problem, only the characteristics of the solution that we want. In contrast, design
is about how we plan the solution, so it is technology-aware. This means that we cannot
design a solution until we know something about the way that we will build it. If you were
asked, for example, to design a can opener, you would probably be able to come up with a
reasonable design, because you probably already have some idea about the way that can
openers work. If, however, you were asked to design a time machine, you would probably
struggle, being unfamiliar with time machine technology. You can contrast this with

2.8

2.8 FROM ANALYSIS TO DESIGN 41

2

Updated storyboard with client page and form iconsFIGURE 2.17

Select
get
quote

Personal
details
submitted

[Buildings
insurance selected]

Building details
submitted [Contents
insurance not selected]

Home
Page

Personal
Details Form

Available
Quotes Form

Insurance
Quote Page

Building
Details
Form

[Buildings
insurance not
selected, Contents
insurance selected]

Building details
submitted
[Contents
insurance
selected]

Contents
Details Form

Contents
details
submitted

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 41

analysing the requirements for a time machine, which would be perfectly possible in the
absence of knowing about the design. Although our analogy suggests that there is large gulf
between analysis and design, the transition from analysis to design is a gentle one in an
 iterative process. Unlike going over a waterfall, our design starts off at a high level, not too
far removed from our analysis, and becomes more detailed.

Architectural design

If, to successfully design in detail, you need to understand the technology of the solution, it
would be premature to talk about detailed design in the early part of this book. As we work
though the chapters and the case study, you will learn a number of technologies and, once you
know these, you will be able to design systems that use them in detail. However, at this stage,
our approach to design will be at a higher level, often known as architectural design. The over-
all architectures of web applications reveal some common themes regardless of the actual
domain of the application. These common themes can be encapsulated into design patterns,
which enable us to reuse design features between different systems. The concepts of design
patterns in software first became popular in the 1990s, in particular with the publication of
(Gamma et al. 1995). This introduced the software community to the idea that common com-
ponents of software design, developed over multiple applications, could be reused by other
applications. These patterns can be expressed in a number of ways, but typically they include
some sort of diagram, which may be written using the UML or something more informal.

Static and dynamic content

An important consideration in our design will be the balance between static and dynamic
 content, and how we represent that content. Our design has to take into account how much
of the application will be represented by pages that are static (are the same for every client)
and how much will have to be dynamically generated content. In most web applications, there
will be a proportion of the site that consists of static content such as HTML, Portable
Document Format (PDF), images, video or other types of content that are served to every
client. On the other hand, any useful web application will almost certainly have to include
dynamic content generated on the fly for specific clients, using some type of server-page tech-
nology. This is why distinguishing between different types of page is useful in design diagrams.

Webflow design

Earlier in this chapter, we introduced some analysis-level diagrams that used web application
extension symbols to show how the dependencies between a series of form pages and a
final client page might describe the structure of a user webflow. While this client-centric
view of a webflow is helpful at the analysis stage, because it helps us to visualise how the
client interacts with the web application, at the design stage we have to consider both
the client and the server. In this section, we introduce a design model for webflow that
describes the structural relationships between client and server that can support the
 generation of dynamic content. In these diagrams, we introduce another WAE icon,
 representing a server page (Figure 2.18).

We begin with a simple model of a single HTTP request–response interaction, where an
HTML form within a static web page submits its content to the server and a client page is
dynamically built and sent back to the client. In this first model (Figure 2.19), we assume

2.9

42 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 42

that the server page both manages any necessary business logic and generates the HTML
response.

This model is similar to the ones we introduced at the analysis stage, but includes the server
page, which builds the client page dynamically. Although this model of dependencies works
within the context of a single request–response cycle, it has some drawbacks. The main
problem is that we started with an assumption that the form was part of a static web page.
This mix of static and dynamic pages does not work particularly well. For example, if the
form is not dynamically generated then it cannot be repopulated with error messages and
previous entries if the user makes a mistake when entering data in the form. This means
that the user would have to start again from scratch if the data entered was for some
 reason invalid. Another serious problem is that it may not be possible to maintain a user’s
‘session’ over a series of interactions. HTTP is a stateless protocol, which means that it
does not maintain connections between a client and a server. Instead, each request–
response cycle may use a new connection to the server. Because of this, the server cannot
‘remember’ the client using the HTTP connection, so instead we have to manage a server-
side session component, which keeps track of a particular user. Each session on the server
has a unique identifier for the client, and that identifier must also be available to the client.
When the client sends a request, the session ID can be sent along with the request and the
server can locate the client session with the matching ID. The problem with this is that
the preferred way to store the session ID on the client is in a browser cookie (a small piece
of text-based data that a browser can extract from an HTTP response and store in a file)
but the user may have chosen to disable cookies in their browser. If this is the case, the
server must use another way of storing the session ID on the client and this requires
the use of dynamically generated web pages, because the session ID has to be written into
the pages themselves.

Dynamic client pages

Given the problem with mixing static and dynamic content described above, our next
design model uses only dynamically generated client pages (Figure 2.20). This makes

2.9 WEBFLOW DESIGN 43

2

The WAE server page iconFIGURE 2.18

A form on a static web page, submitted to a server page that builds a
client page

FIGURE 2.19

«submit»
Form Server

page

«builds»
Client
page

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 43

it possible for the server to guarantee that it can handle the client’s session, and it is also
 possible for the server page to build, and rebuild, the form page so that, if the user makes
a mistake when filling in the form, a new form page can be provided that contains the data
they have already entered along with the necessary error messages, to help them to correct
their entries.

Now, the server page dynamically generates a client page with a form, which submits back
to the same server page until the next client page can be generated. Although this is
a somewhat simple model, it provides the basic static structure that can provide the
 foundation for a dynamic webflow. There is a problem, however in that the server page is
now tasked with making decisions about the webflow and generating one of two possible
pages, either an updated form or the next client page. To provide a better separation
of concerns a common architectural approach is to include an action object that takes
responsibility for webflow decisions. The action object can then delegate to further server
pages to either regenerate the form page or build the next client page (Figure 2.21).

Modelling dynamic webflow

The diagrams we have used so far are static diagrams showing the relationships between
different web components. In order to visualise the dynamic webflow that these components
contribute to, it can be useful to sketch some sequence diagrams. The sequence diagram
in Figure 2.22 includes some of the participating components from the static model in
Figure 2.21, identifying the messages that pass between them over time. In this case, we
are only modelling the situation where the original form does not have to be regenerated,
but this can easily be added to the diagram using a condition, as we did in Figure 2.16.

The diagram in Figure 2.22 represents the typical interactions in one request–response
cycle for a web application. However, before digging any deeper into our own designs we

44 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Page structure that includes dynamic form generationFIGURE 2.20

Form «submit»
Server
page

«builds»
Client
page

«builds»

Including an action object and specialised server pagesFIGURE 2.21

Page
«builds»

«builds»«submit»

Action
object

Server
page

Server
page

Server
page

Form Client
page

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 44

must first explore in more detail what we mean by a server page and an action object. We
also need to understand what we mean by ‘forward’, how a server page ‘delegates’ to an
action object, and so on. We also need to see how we can represent the contents of our
domain concepts on web pages. In the chapters that follow, we explore all of these
 concepts and the necessary technologies to implement them. We can build a complete
design once we understand how all the various components can work together.

Design patterns for web page structures

The design patterns we have looked at so far address the higher-level architecture of the
system in terms of server-side components. In the final part of this chapter, we look at
some page-design patterns that are relevant to the client. Like the patterns described
 previously, these patterns are reusable across many different web applications. We look at
the following patterns:

● Site logo at top left
● Navigation bar
● Breadcrumbs
● Three-region layout
● Home page
● Site map
● Store content in the database

The main focus of these patterns is usability, making it easy for the user to navigate our
web applications. These patterns all come from (Graham 2002).

Site logo at top left

The site logo at top left pattern is a very simple one, but one that you will see commonly
used across the web. The site logo, as well as appearing at the top left of the page (as the

2.10

2.10 DESIGN PATTERNS FOR WEB PAGE STRUCTURES 45

2

Modelling the dynamic webflow with a sequence diagramFIGURE 2.22

New
user

Select option

Show client page

Start
page

Use case
controller

Client
page

option

delegate

create

Page
builder

Action
object

forward

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 45

name of the pattern suggests) should also always act as a hyperlink back to the site’s home
page (Figure 2.23). The point of this pattern is that it enables the user at any time to have
a quick and easy route back to the home page. Once you are aware of this pattern, it is very
irritating to visit sites that do not use it!

Navigation bar

Earlier, we introduced use cases as a way of specifying our actors’ high-level goals for the
web application. These main use cases will be starting points for user navigation. Within
these high-level use cases, there may be a number of more detailed use cases that relate to
specific tasks. The navigation bar pattern is a way of providing the user with a simple way
of navigating a web site based on this combination of general tasks and related sub-tasks.
The pattern suggests that the main use cases will appear in a navigation bar across the top
of the page, making it easy for users to perform the most important functions easily. The
left-hand side can be used for service navigation (i.e. what is inside the current use case).
This would enable someone to access a high-level use case such as ‘Contact Us’, and the
service navigation bar might include use case options inside that high-level use case, such
as ‘office locations’, ‘email addresses’, ‘departments’ etc. Figure 2.24 shows the general
 layout of a page using the navigation bar pattern.

The navigation bar will include the ‘site logo at top left’ pattern which, as we have seen,
already acts as a home page link. It also typically includes links to information about the
organisation or company that owns the web site, such as their privacy policy and contact
information. More specific links will depend on the nature of the web application. For
example, e-commerce sites would include registration and login, checkout, shopping cart
and account information. There are a whole range of other possibilities, depending on the
type of application. These may include downloadable items, a site map, communities,
 frequently asked questions, news and press releases, jobs, etc.

In the WebHomeCover application, the high-level use cases for the navigation bar would
include those we have already seen, for example ‘change policy details’. For this use case,

46 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

The ‘site logo at top left’ patternFIGURE 2.23

SITE LOGO

Clicking here always takes you home

The ‘navigation bar’ patternFIGURE 2.24

Navigation bar SITE LOGO

Service
navigation

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 46

the service navigation bar might include detailed use case options such as ‘change address’,
‘change level of cover’, ‘add cover’, etc.

Breadcrumbs

The idea of breadcrumbs comes from fairy stories where the characters leave a trail of
breadcrumbs through the woods in order to find their way home again. In stories, these are
usually eaten by birds, leading to disaster, but this is unlikely to happen on web sites. The
role of breadcrumbs is to tell the user where they are relative to the home page. Each time
the user moves to a new page, another breadcrumb is added to the list, so it is easy
for the user to see the path they have taken through the site. In addition, the components
of the breadcrumb list should be hyperlinked, so clicking on any breadcrumb will take you
to that page. Breadcrumbs are often a secondary part of the navigation bar and may be used
in conjunction with a search box (Figure 2.25).

Three-region layout

The three-region layout pattern is actually based largely on the patterns we have already
introduced (site logo at top left, the navigation bar and breadcrumbs). If we use these
 patterns, two regions (the top and side navigation bars) are already used, and we are left
with a main page area, which will contain the current content (Figure 2.26). This pattern
is very common in web applications, and can be implemented using tables, frames or style
sheets. We favour style sheets over tables and tables over frames, since one rule we should
be aware of is ‘no frames on public sites’. The main reason for not using frames is that
browser support is not very reliable for frames, in particular when presenting pages on the
mobile Internet. However we may consider not using the three-region layout at all when
 supporting mobile clients, and favour simpler approaches that separate out the navigation

2.10 DESIGN PATTERNS FOR WEB PAGE STRUCTURES 47

2

The ‘breadcrumbs’ patternFIGURE 2.25

Navigation barSITE LOGO

Home -> we went here -> then here -> now we’re here search

The ‘three-region layout’ patternFIGURE 2.26

Brand and structure navigation

Service navigation Content

SITE LOGO

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 47

from the content. We address these issues when we look at adaptive web applications for
mobile clients in chapter 14. Although many sites still use tables for structure, increasing
browser support for sophisticated style sheets makes them the more favoured approach.

Home page

The three-region layout is recommended as a consistent layout for all the pages on a web
site. The home page, however, can be an exception to the three-region layout rule, since
it has a special role as the starting point for users, and can therefore have some special
 characteristics. It should not, however, be just a splash screen, which users may find
 frustrating as it may take a long time to load and run (if, for example, it includes an
 animation or movie, as some web sites favour). Rather, it needs to include navigation to the
main use cases to enable the user to quickly and easily get started on their goals. Figure 2.27
shows a suggested outline for the home page pattern. It gives the site logo more prominence
than does the three-region layout pattern, placing it in the centre of the screen. Beneath
the logo there is some brief information that should convey the main message of the web
site. Beneath this message, prominent links, perhaps using buttons or images, provide quick
access to all the most important use cases in the system. Finally, some more information
about the main features of the site may appear. Overall the intention of the home page
 pattern is to have a high level of impact while enabling the user to get started on their goals
as quickly as possible.

Site map

One of the suggested links for the navigation bar is the site map. Like the home page, the
site map has a special role in a web application, because it provides a bird’s eye view of
the whole application to the user, allowing direct access to any part of the site (or at least
those parts that would sensibly allow direct access) without needing to know how to
 navigate through other pages. Many site maps are just lists of text. However a more
 interesting and useful site map would provide a workflow overview, showing not just a list
of links but a visual map of the routes through the web application. Exactly how the site
map might appear depends on the application, but Figure 2.28 indicates some of the
 features that might be included: visual components that represent hyperlinks to web pages
but also some indication of the links that already exist between these pages. There are
many ways of laying out a graphical site map. A web search for ‘graphical site map’ should
give you plenty of links to sites with different styles that can be used.

48 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

The ‘home page’ patternFIGURE 2.27

Company Logo

Brief information

navigation1 navigation2 navigation3 navigation4 navigation5

What’s on the site, what you will enjoy, what has changed what
benefits you will gain…

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 48

Store content in the database

Web applications often have to provide the same content across many different pages of
a web site. Figure 2.29 shows a very simple example of this type of requirement. Here, we
may want to add a simple footer (‘© WebHomeCover.com 2000–2008’) to the bottom
of every page. The last thing we would want to have to do would be to add this to every
single page and have to maintain each instance of this data separately. If, for example,
we had 154 pages in our web application, and we wanted to update the footer to ‘© Web
HomeCover.com 2000–2009’, we would have to do this 154 times. It should be noted that
the footer example has a number of simple solutions, because it is consistent across every
page, but it illustrates a concept that is very common in web applications, which is that the
same underlying data may need to appear in different ways across different parts of a web
site. As a more complex example, consider a site where the user logs in. In applications like
this, the user’s login name, or perhaps some alias, often appears somewhere on the pages
that they visit after the point where they have logged in.

The most important pattern that we have in dynamic web applications is simply to store
content in a database. Maintaining a web application can get very complex, and we do
not want to have to copy and paste large amounts of content for every update to the
 application. Therefore we need to store content in one place, in the database, and construct
pages dynamically. To take our simple ‘footer’ example, the string of text used for the page
footer could be stored in one place, in the database, and read from that database each time

2.10 DESIGN PATTERNS FOR WEB PAGE STRUCTURES 49

2

The ‘site map’ patternFIGURE 2.28

About Us

Claims

Policies

Contact Us

The Company

Make a Claim

Track a Claim

Cancel a Claim

Quotes

Emails

Get a Quote

View Policies

Update Policies

Addresses

Apply for a Policy

Policy Documents

Reusing content across multiple pagesFIGURE 2.29

footer footer

Page 1 Page 154
© WebHomeCover.com

2000–2008

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 49

it is required in a page. If the footer needs to be updated, it only needs to be updated in
one place – the database.

General design guidelines

There are many sources for general design guidelines for web applications. These examples
are taken from (Sparks 2004).

● Design around existing content, not future content

A web application should be based around what you already have, not what you might
have later. This is a basic principle of agile development – we get the simplest thing
 possible working early and then develop it over time. An over-complex application
structure designed to cater for things that might come along later is unnecessary.
● Avoid unnecessary images

Images take time to load and every image download is a separate HTTP connection.
There are many contexts (e.g. on a mobile device) where this is a major overhead. Don’t
use images where text will suffice.
● Exploit hyperlinks

Use hyperlinks as much as possible. This is really only directly relevant to static rather
than dynamic content, since in a lot of dynamic content scenarios we have to guide the
user through a restricted set of pathways. However we should make sure that the
 navigation around our site is well supported by hyperlinks.
● Use cascading style sheets (CSS)

As well as being difficult to build and maintain, HTML that includes its own presenta-
tion specification can get very large. Using cascading style sheets (covered in Chapter 4)
reduces the size of HTML page downloads.
● Make navigation flow

This is an important aspect of web applications, because the user workflow has to make
sense. We need to take care to provide the right number of user pathways from
 particular points in time. One important aspect is making sure that the user can backtrack
correctly from any point in a web application, for example being able to get out of the
checkout in an on-line purchasing situation in a controlled way.
● Visit your own site regularly

You are more likely to spot problems in your web applications by approaching them as a
user from the outside in, rather than just looking at them from the developer perspective,
from the inside out.

50 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 50

Exercises

2.1 Using the example of a customer login, where the user enters a user name and
 password into a form on a client page, draw a sequence diagram showing the various
interactions. Consider the web flow for both a successful and an unsuccessful login.

2.2 Create the following artefacts for the ‘View policy details’ use case:
● A use case description with at least one alternate flow
● A system sequence diagram
● A storyboard

Are there any updates that you feel are necessary to the domain model?

2.3 This exercise is best done in groups, so you can try out the idea of a requirements
workshop. You need to identify some high-level requirements, a domain model and
a use case diagram for this project:

Project description: Many research studies rely on questionnaires to gather their data.
Doing this on-line can help to improve the number of returns, so your team has been
asked to develop a web application to support the creation of web-based research
 questionnaires. The system needs to be able to gather questionnaire data, store it, allow
it to be retrieved and generate simple statistical reports.

In your requirements workshop, adopt some roles that you think would be appropriate to
this scenario and consider the requirements of the stakeholders in those roles.

2.4 Design a home page for the WebHomeCover application, selecting the most
 important use cases and messages from the analysis.

2.5 Design the web page structure for any of the high-level use cases described in this
chapter. Use the three-region layout, with all the high-level use cases in the top-level
navigation bar and service-level navigation on the left-hand side.

2.6 Take the basic designs of your home page and three-region layout from Exercises 2.4
and 2.5 and apply them to the questionnaire application from Exercise 2.3.

2.7 Consider how the webflow might work for a simple questionnaire that has five
 questions, each appearing on a separate page. What might the breadcrumb trail look
like after you had answered the final question?

SUMMARY 51

2

This chapter began by looking at how requirements might be gathered and analysed in
order to develop a web-based application, introducing some practices such as joint
development workshops and use case analysis. We applied some notation from
the UML, including some special extensions for web applications, to help us describe
components and workflows within a web-based system. We also saw how the iterative
approach and phases of the Unified Process can help us to organize a web development
project. In the latter part of the chapter, we focussed on architectural approaches to web

SUMMARY

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 51

References and further reading

Cockburn, A. (2005) Crystal Clear: A human-powered methodology for small teams. Boston:
Addison-Wesley.

Conallen, J. (1999) Building Web Applications with UML. Reading, MA: Addison-Wesley.
Conallen, J. (2001) ‘Modeling Web-Tier Components’. Dr. Dobbs Journal. http://www.ddj.com/

dept/architect/184414696
Fowler, M. (2002) Patterns of Enterprise Application Architecture. Addison-Wesley.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design Patterns: Elements of reusable

object-oriented software. Addison-Wesley.
Graham, I. (2002) A Pattern Language for Web Usability. London: Addison-Wesley.
Jacobson, I. (2004) What I don’t like in RUP. http://www.jaczone.com/postcards/.
Rosenberg, D., Stephens, M. and Collins-Cope, M. (2005) Agile Development with Iconix Process:

People, process and pragmatism. New York: Apress.
Sparks, M. (2004) Extreme Website Design. Exoftware Agile Solutions, http://www.exoftware.com/

whitepapers

52 CHAPTER 2 WEB APPLICATION REQUIREMENTS ANALYSIS AND DESIGN

2

application design, introducing important aspects of server-side components and
webflow. We introduced some common design patterns for web pages, intended to
assist in the usability of a web application. Table 2.1 summarises the terms that were
introduced in this chapter. In the chapters that follow, we apply the architectural and
usability patterns as we begin to build the components and interactions of a working
web application.

Terms introduced in this chapterTABLE 2.1

Acronym Meaning

CSS Cascading Style Sheets
MoSCoW Must have, Should have, Could have, Want to have
PDF Portable Document Format
ROI Return on Investment
UML Unified Modeling Language
UP Unified Process
WAE Web Application Extensions

Stobart-02.qxp:Stobart-02 11/7/07 6:17 PM Page 52

53

CHAPTER 3

Structure and Content in the
Presentation Layer: the HyperText
Markup Language (HTML)

LEARNING OBJECTIVES

● To understand the origins of HTML

● To understand the importance of separating content, structure and
presentation in web applications

● To be able to create HTML pages using mark-up

In this chapter, and the ones that follow, we trace the development of the mark-up languages that
have been used to structure and present the pages on the web: HTML, CSS, XML and XHTML.
HTML is covered in detail in this chapter and CSS in Chapter 4, followed later by various aspects
of XML that relate to web applications. We begin by looking at some of the key features of the
common root of these mark-up languages, SGML, which will introduce us to some of their main
features. We move on to see how HTML can be used to build web page structure and content,
including lists and tables. We conclude the chapter by seeing how HTML forms can be used to
submit data from a browser to a server using an HTTP request.

Where it all begins – SGML

In this book we use a number of different, but similar, types of mark-up syntax. Mark-up
is information that comes over and above the content of a document to give us guidance

3.1

INTRODUCTION

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 53

54 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

about its structure or presentation. These mark-up indicators are generally known as ‘tags’.
Mark-up is a type of metadata, in that it enables us to provide data about data, for example
by specifying how some data should be organized on a web page. Most of the mark-up
 syntax we look at has a common origin in Standard Generalised Mark-up Language
(SGML). Although this language had many roots, a major thread in the story was earlier
work at IBM, where Charles Goldfarb, Ed Mosher and Ray Lorie developed a mark-up
language in 1969 that was named after the initial letters of their surnames: GML. This
was published publicly (i.e. outside of IBM) in 1973. The basic principles of this
 language, as expressed at that time, were that it should be possible to design a
 generalized mark-up language so that the mark-up would be useful for more than one
application or computer system. The mark-up would be defined by tags that meant
information that was marked up by a particular type of tag would be processed in
 exactly the same way, regardless of where the tag appeared or however many times it
was used. The actual processing, however, would not be defined in the mark-up, since
this would depend on the context in which the document was being processed. As GML
was further developed, one of the important features that was added was the possibility
of validation, meaning that a document that used GML mark-up could be checked to
ensure that it used that mark-up in an appropriate way. This meant that it was necessary
to have some way of expressing the correct ways that a particular set of mark-up tags
could be used (Goldfarb 1996).

Later, SGML was developed from the foundations of GML and various other similar
research efforts. In 1978, the American National Standards Institute (ANSI),
with Goldfarb strongly involved, established the Computer Languages for the
Processing of Text committee, and published the first draft of SGML in 1980. Unlike
GML, SGML is not named after anyone, but stands for Standard Generalised Markup
Language. It also differs from GML in the way that it expresses mark-up, so although it
is similar in principle it is different in syntax. In 1986, with the participation of the
International Standards Organisation (ISO), the first international standard for SGML
was published.

Before we look at the specific mark-up languages of interest in this chapter, in
 particular HTML and XML, we introduce some very basic concepts that both of these
languages (and others) take from SGML. These concepts are tags, elements, attributes
and ‘well-formedness’.

Tags

Although there is some flexibility about the way that tags can be expressed in SGML, the
‘reference’ syntax uses angle brackets to indicate a tag. The name of the tag appears
between the angle brackets, like this:

�tag_name�

This is in fact a start tag, which means that it indicates the start of the content that is
to be marked up using this tag. At the end of the marked up content, there is an
end tag, which is similar to the start tag, except that the tag name is preceded by a
 forward slash, i.e.

�/tag_name�

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 54

3

3.1 WHERE IT ALL BEGINS – SGML 55

Elements

A pair of start and end tags, and the marked-up content in between, is known as an element.
The general format for an element is therefore:

�tag_name�

Marked up content
�/tag_name�

The characteristics defined by the tag are applied to the content of the element. Elements
can have other elements nested inside them, to any level of nesting. A nested element is
known as a ‘child’ element, and begins and ends inside its ‘parent’ element.

�parent_tag�

�child_tag�

Marked up content
�/child_tag�

��parent_tag�

Attributes in tags

Some elements have attributes, which configure the element in some way. Attributes appear
inside the opening tag and consist of one or more name–value pairs, using the format:

attribute_name�“attribute_value”

For example, if we had an element called ‘document’, it might have an attribute called
 ‘language’ with a value that used a standard language code, such as French (fr):

�document language�“fr”�

Single quotes can be used around attribute values instead of double quotes, i.e.

�document language�‘fr’�

It is important to make sure that the double and single quotes you use are the vertical type
(Unicode character numbers 22 and 27 respectively) known as the quotation mark and the
apostrophe. Be careful if you edit your XML documents in a word processor, because it will
probably use the left and right quotation marks (numbered 91–94 in Unicode), which
will cause errors in your documents. Rather than a word processor, it is therefore better to
use a dedicated editor for mark-up (such as XMLSpy) or a text editor to create and
edit your files.

Attributes are used in a different way from elements because they are about providing
metadata to an element. In other words, they are used to provide extra information about
an element or apply some additional configuration to it. The language in which a document
is written is information about the document, not part of its content, so specifying the
 language as an attribute makes more sense than using an element.

Start tag

Element

Nested
element

End tag

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 55

56 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

An element may have more than one attribute, in which case they all appear inside the
opening tag. The ‘document’ element, as well as having a language attribute, may also have
a ‘type’ element to indicate what type of document it is. For example, the document might
be an instruction manual:

�document language�“fr” type�“manual”�

Where an opening tag contains more than one attribute, their order is unimportant.
Therefore this opening tag has exactly the same meaning as the previous one:

�document type�“manual” language�“fr”�

Well-formed documents

Although things can become complex in SGML, the main rules for what constitutes a
 well-formed document are quite simple. Here, we lay out the four most important:

● In a well-formed document, all tags must be balanced so that an element has both an
opening and a closing tag:

�tag�. . .�/tag�

● Tags must be correctly nested so that a child tag must be closed before its parent tag
is closed:

�parent_tag�

�child_tag�

. . .
�/child_tag�

�/parent_tag�

● A document must have a root element that surrounds the whole document, so that
its start tag is the first tag in the document and its end tag is the last.

● All attribute values must be written in quotes. Both single and double quotes are
valid, but they must be matched correctly (i.e. you cannot mix single and double
quotes around the same attribute value).

�tag name�“value”� or �tag name�‘value’�

These basic ideas from SGML apply to both the HyperText Markup Language (HTML)
and the eXtensible Markup Language (XML), both of which are implementations of
SGML. However, SGML has many complex rules about what syntax is valid, including a
number of features that enable parts of the syntax to be minimised or omitted. This com-
plexity helps to explain how HTML ended up as a seemingly rather inconsistent syntax and
why browsers are very tolerant of variations in the use of HTML tags.

HTML– a language for web pages

In this section, we introduce the HyperText Markup Language (HTML), which is a
 specific implementation of SGML for marking up web pages and for years was the
 mainstay of the web. However, HTML is rather a blunt instrument for creating web
 application presentation, and it has evolved into XHTML, which we look at later.

3.2

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 56

Nevertheless, studying HTML is a good place to start if we are to understand the way that
mark-up of web pages has evolved since the beginnings of the World Wide Web, and it also
helps us to understand why other technologies have begun to complement or replace
HTML in web applications.

HTML began with the advent of the World Wide Web in 1991, when Tim Berners-Lee at
CERN (the European Organization for Nuclear Research) added the first web protocols
and tools to the Internet. One of his contributions was the first version of HTML. Berners-
Lee’s original version contained a small number of tags, many of which survive into
XHTML today. The main idea behind HTML was that it would enable documents to be
hypertext-linked to one another, so that clicking on something in one document would take
you to another, related, document. In principle, these hyperlinks were to be bidirectional,
but HTML does not automatically do this, so hyperlinks in HTML pages work in one
 direction only. As the popularity of the web increased over subsequent years, and
 graphical browsers became more common, HTML evolved largely by an ad hoc process,
with various features being added to different browsers and gradually becoming common
practice. By 1995, with the proliferation of browsers and the increasing popularity of the
World Wide Web, it was necessary to try to apply some more rigorous standards to the
evolving language, so HTML version 2.0, which included the definition of HTML as
the ‘text/html’ Internet media type, was defined by the Internet Engineering Task Force
(IETF). The standard was simply a way of formalising what was already in use, so
HTML 2.0 ‘roughly corresponds to the capabilities of HTML in common use prior to June
1994’ (Connolly 1995).

The next version of HTML was version 3.2, in 1996. This version was recommended as a
specification by the World Wide Web Consortium (W3C), and was again a formalisation
of common practice. Some features added in version 3.2 included tables, Java applets and
text flow around images.

Version 4.0 dates from 1998 and included new multimedia options, scripting languages,
style sheets, better printing facilities, accessibility features for the disabled and internation-
alisation support. Version 4.01 brought along some minor changes in 1999. Between 2000
and 2002, the W3C developed the specification for XHTML 1.0. This is the migration
path from HTML, so future versions of HTML will in fact be XHTML specifications.

In this chapter, we introduce HTML before introducing XHTML in Chapter 5. This is
partly because we need to look at XML in detail before we can fully understand XHTML.
It is also so we can explore some of the issues that have come to the fore with web
 applications that have used HTML in the past, perhaps most significantly the tendency to
mix content, structure and presentation in a single document. To address this problem the
use of style sheets, covered in Chapter 4, has gradually become the required approach to
HTML presentation, and this has assisted the transition from HTML to XHTML.

HTML document structural elements

HTML documents are plain text files with tags that mark up the content of the page. They
become web pages when they are made available over the Internet using a web server and
are rendered on the client machine using a web browser. HTML tags are enclosed in angle
brackets, the same as the SGML reference syntax. Elements using HTML tags can be used

3.3

3.3 HTML DOCUMENT STRUCTURAL ELEMENTS 57

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 57

to specify both the structure and the style of the information shown in a web page. The
browser uses these tags to organize the text between them, applying the specified mark-
up to anything between the opening and closing tags. For example the paragraph element,
defined by the �P� tag, is used for organising text into paragraphs.

�P�some text in paragraph one . . .�/P�

�P�some text in paragraph two . . .�/P�

The use of upper case for element names (and lower case for attribute names) is
 recommended by the most recent HTML specification, version 4.01, though in fact HTML
is not case-sensitive so this is just a convention rather than a requirement:

Element names are written in uppercase letters. . . . Attribute names are written
in lowercase letters. . . . Recall that in HTML, element and attribute names are
case- insensitive; the convention is meant to encourage readability. (Raggett et al. 1999)

We will see in Chapter 4 that XML and XHTML use lower case letters for element names.
Therefore it will be immediately obvious to you as you see mark-up in this book that if the
element names are upper case then the example is in HTML 4.01, and if they are in lower
case then the mark-up is XML or XHTML.

Paragraphs, and other similar elements, can be regarded as structural elements because
they organize the content in some semantic way. In other words, they help us to under-
stand its meaning. A paragraph usually groups together some sentences that refer to the
same topic. Similarly, a tag such as �H1�, for main heading elements, can be seen as
 structural. Organising text into headings, subheadings, paragraphs, etc. is about providing
structure in terms of how different blocks of text relate to one another. It does not, how-
ever, specify how those headings, subheadings etc. should look. In contrast, HTML also
contains many tags that are to do with the presentational styles of a document, to change
the font, colour or other aspects of style. A simple example of this type of tag is the bold
(�B�) tag:

�B�this text will be presented in bold face�/B�

A tag like this is specifically used to define how part of the document looks when displayed
and has nothing to do with the structure or semantics of the text. We will not be covering
presentational mark-up in this chapter. The preferred way of handling the presentation of
a page is to use cascading style sheets (CSS), which we cover in Chapter 4.

Creating an HTML document

The simplest possible HTML document contains a small set of structural and content
 elements. These are HTML, HEAD, TITLE and BODY. The first and the last thing in an
HTML document should always be the tags that surround the root (HTML) element,
i.e. �HTML� . . . �/HTML�. Inside the HTML element, there is a nested HEAD
 element, �HEAD� . . . �/HEAD� that contains the document header information,
including the title of the document. The TITLE element is nested inside the HEAD
 element, using �TITLE� and �/TITLE� tags. The content of the TITLE element appears
at the top of the browser’s title bar, in the history list and in your bookmark file if you
 create a bookmark to the page. The BODY element comes after the HEAD element.

58 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 58

The BODY element represents the page content that is shown in a browser window. Here
is an HTML document with this minimal set of elements:

�HTML�

�HEAD�

�TITLE� The title of the web page �/TITLE�

�/HEAD�

�BODY� body content of the web page �/BODY�

�/HTML�

Content types

Within the document body, the content is frequently organized into blocks of textual
 information, such as headings, paragraphs, lists and tables. There may also be other media
types in the body, such as images, sound clips and movies. A media type is some kind of
Multipurpose Internet Mail Extension (MIME) type that defines a particular type of file
that can be used on the Internet. Since HTML 4, the preferred term is content type, since
media type is more properly applied to types of output device. Regardless, the type of
an HTML document is ‘text/html’, but such documents may contain references to
 content that is of a different type. HTML provides a large number of tags for organising
the structure of a document’s content, including all the other content types that may be
included inside it. In this chapter we look at the main organising elements: headings,
 paragraphs, lists, tables and forms.

Text elements

Much of the content of web pages is based on the management of text. The structure
of the text can be organized using headings, subheadings and paragraphs. Some other
types of content can usefully be structured in terms of lists (which may be ordered in
some way) or tables. There are also certain semantic aspects of text that can be included
in mark-up, to provide emphasis or indicate quotations, for example. In this section,
we look at some of the basic structural elements that assist in organising content in HTML
pages.

A very common way of organising text-based content is to use headings, subheadings and
paragraphs. The H1, H2, H3, H4, H5 and H6 elements can be used for various levels of
heading and subheading. H1 is the largest heading and H6 the smallest. Because a heading
is generally larger than the text that follows, it may not be sensible to use more than the
first two or three levels of heading. In many browsers, the smallest heading types are
 smaller than standard paragraph text.

As we have already seen, the HTML syntax for a paragraph element is �P�. You should
also add the closing �/P� tag at the end of each paragraph to make the element ‘well
formed’, though most browsers will still display the page correctly without the closing tag.
This is an aspect of minimisation, a feature of SGML, which means that not all elements
need to have closing tags, if the end of an element can be inferred from other parts of the
document structure, such as the beginning of another paragraph inferring the end of
the previous one. Browsers generally leave a blank line before a paragraph element. In the
example below, we use an H1 element for a main heading and H2 elements as subhead-
ings, with the main body of the text in paragraphs, surrounded by �P� . . . �/P� tags.

3.3 HTML DOCUMENT STRUCTURAL ELEMENTS 59

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 59

This example also includes the comment syntax in HTML, which looks like this:

�!–– this is a comment ––�

We will use this comment syntax throughout the book to indicate the source file that is
being referred to in each example.

�HTML�

�HEAD�

�TITLE�Versions of HTML�/TITLE�

�/HEAD�

�BODY�

�!–– File: example3–1.htm ––�

�H1�Versions of HTML�/H1�

�H2�HTML 1.0�/H2�

�P�

The first version of HTML dates from 1991, and was developed by Tim Berners-Lee.
It was very different from the HTML we know today. . .

�/P�

�H2�HTML 2.0�/H2�

�P�

The second version of HTML, in 1996, was an attempt to standardize the language,
which was being widely implemented by different vendors’ web browsers. . .

�/P�

�/BODY�

�/HTML�

Figure 3.1 shows what the page looks like in Internet Explorer 7. Note the different sizes
of text for headings, subheadings and paragraphs.

60 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Headings, subheadings and paragraphsFIGURE 3.1

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 60

3.5 STRUCTURING TEXT 61

3

HTML document type

Browsers generally cope with minimisation of HTML elements and are, in fact, quite
 forgiving of poorly formed HTML syntax. However it is good practice not only to write
well–formed HTML but also specify a type definition for the document. This helps
browsers to render documents by matching their structure to a particular definition of how
HTML elements and attributes should be organized.

Since HTML 2.0, public document type definitions (DTDs) have been available for
 specifying the types of HTML documents. There are three of these DTDs available for
HTML 4.01; ‘strict’, ‘transitional’ and ‘frameset’ (Ragget et al. 1999). The ‘transitional’ and
‘frameset’ versions allow a wider range of elements and more flexible structure than the ‘strict’
version and allow extensive mixing of presentation with content and structure. We look more
closely at DTDs and how they can be used to validate the structure of documents in a later
 chapter but, in the meantime, we declare that our HTML mark-up uses the ‘strict’ type
 definition. To do this, we need to add the following line to the top of our HTML documents:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/htm14/strict.dtd”�

This states that the document should follow the strict rules for the structure of
HTML 4.01. The ‘DOCTYPE’ refers to a DTD that is publicly available for specifying
HTML document types. Here is our first example with the necessary definition added:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/htm14/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Versions of HTML�/TITLE�

�/HEAD�

�BODY�

�H1�Versions of HTML�/H1�

�H2�HTML 1.0�/H2�

�P�

The first version of HTML dates from 1991, and was developed by Tim Berners-Lee.
It was very different from the HTML we know today. . .

�/P�

�H2�HTML 2.0�/H2�

�P�

The second version of HTML, in 1996, was an attempt to standardise the language,
which was being widely implemented by different vendors’ web browsers. . .

�/P�

�/BODY�

�/HTML�

Structuring text

As well as structuring our pages into headings and paragraphs, there are a number of other
structural elements that we can apply to HTML documents. In this section, we look at
some of the elements that help us to structure text.

3.4

3.5

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 61

Line breaks and horizontal rules

Line breaks (BR) and horizontal rules (HR) are examples of empty elements. An empty
 element in HTML is one that, instead of having separate start and end tags, consists of
a single tag, with no closing tag either required or implied. One example of an empty
 element in HTML is the line break, which first appeared in the HTML 2.0 specification:

�BR�

This element does not have start and end tags, but consists of a single tag that forces a line
break in the document. Unlike the paragraph element, which starts a new line and leaves
a space before the paragraph, a BR element starts a new line but does not force a blank line
to be inserted.

The horizontal rule is another example of an empty element that dates from HTML 2.0.
The tag looks like this:

�HR�

A browser usually displays the horizontal rule as a graphical line. Of course one might
 question whether the HR element is structural or just presentational. Its definition in the
various HTML specifications has evolved from ‘a divider between sections of text’ via ‘used
to indicate a change in topic’ to ‘a horizontal rule to be rendered by visual user agents’, so
one could make a case for either interpretation (Korpela 2002).

Citations and block quotes

There are many structural elements in HTML, some more commonly used than others.
Although CITE and BLOCKQUOTE are not often required, they are useful examples of
elements that have some semantics attached to them; they convey something about the
meaning of the text and its relationship to other parts of the document around them rather
than hierarchical structure or presentation.

It is common in documents for longer quotations and citations to be structured differently
from the main body of the text. HTML includes the �BLOCKQUOTE� element for long
quotations and the �CITE� element for citations. The next example is similar to the last
one, but is modified to include �CITE� and �BLOCKQUOTE� elements. You should
note that BLOCKQUOTE elements should not directly contain text. Rather, they should
contain structural elements such as paragraphs or headings, with the text inside those.
Here, we use a paragraph element.

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Versions of HTML�/TITLE�

�/HEAD�

�BODY�

�!–– File: example3–2.htm ––�

�H1�Versions of HTML�/H1�

�H2�HTML 1.0�/H2�

�P�The first version of HTML dates from 1991, and was developed by Tim
Berners-Lee. It was very different from the HTML we know today.

62 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 62

�CITE�Tim Berners-Lee�/CITE� is quoted as saying�/P�

�BLOCKQUOTE�

�P�

If you use the original World Wide Web program, you never see a URL or have to
deal with HTML. That was a surprise to me. . .that people were prepared to
painstakingly write HTML.

�/P�

�/BLOCKQUOTE�

�H2�HTML 2.0�/H2�

�P�

The second version of HTML, in 1996, was an attempt to standardise the language,
which was being widely implemented by different vendors’ web browsers. . .

�/P�

�/BODY�

�/HTML�

Figure 3.2 shows how the complete page looks in Internet Explorer 7.

In this browser, the citation appears in italics and the block quote is separated from the previ-
ous text and indented. It is important to note however that we are not using elements here for
the purposes of indenting paragraphs or applying an italic text style. The CITE and BLOCK-
QUOTE elements are about the structure and meaning of the text, not controlling its appear-
ance. We are letting the browser decide how a citation or a block quote should actually appear,
so the fact that the quote is indented and the citation text is italic is not something explicitly
defined. This is an important point, since we should be aware of the difference between
 structural and presentational tags and how to use them. The use of BLOCKQUOTE simply to
indent a paragraph is deprecated, which means that although the tag may be displayed that way

3.5 STRUCTURING TEXT 63

3

Using the CITE and BLOCKQUOTE elementsFIGURE 3.2

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 63

in a particular browser it should not be used simply to get that presentational effect. The
BLOCKQUOTE element is an indication that the body of the element should be given some
special handling to recognize that it is a long quotation. It should not be used as a convenient
way of achieving a specific format, regardless of the actual content of the element. Perhaps even
more obviously, using the CITE element should not be seen simply as a way of making text italic.

Idiomatic (phrase) elements

CITE is one of the idiomatic or phrase elements. These elements relate to common types
of usage in terms of how we express ourselves in writing. For example, we look for ways to
emphasize specific parts of text. To support these idioms, HTML includes elements such as
EM for emphasis and STRONG for stronger emphasis. Browsers usually render EM text in
italics and STRONG text in bold face but, as with the CITE element, the actual way that
the browser chooses to render these elements is independent of our use of the tags. We use
them to indicate a type of expression, not to select a particular appearance for the text.

Subscripts and superscripts

The SUB (subscript) element uses a small font aligned towards the bottom of the regular
character height; the SUP (superscript) element uses a small font aligned towards the top
of the regular character height. These elements might appear to occupy a grey area
between the structural and the presentational. However there are important accepted uses
for these aspects of content, for example in scientific notation or in rendering some
 languages. Superscript is commonly used to indicate references, footnotes or trademarks,
and in mathematical formulae, while subscript is used in chemical formulae. The HTML 4
specification includes these two useful examples of superscript and subscript:

H�SUB�2�/SUB�O to represent H2O (the chemical symbol for water)

E � mc�SUP�2�/SUP� to represent E � mc2 (Einstein’s formula for relativity)

Because of these specific applications, the use of the �SUB� and �SUP� elements can
be seen as structural, as long as they are applied in these generally accepted contexts rather
than just for effect.

Special characters

Because HTML pages use a markup syntax, there are certain symbols, in particular � and �
that have special meaning to the applications (such as browsers) that process them. HTML

64 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

HTML character referencesTABLE 3.1

HTML character reference Equivalent character Meaning

< � Less than
> � Greater than
" “ Quotation mark
& & Ampersand
 (a space) Non-breaking space
® ® Registered trademark
© © Copyright

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 64

 character references are numeric or symbolic names that can be used instead of literal
 characters in an HTML document. They are useful for referring to special characters
 outside the normal number and letter ranges in character sets, or those that have other
meanings in the mark-up language and could therefore cause processing problems for
browsers. All of the HTML character references begin with an & sign and end with a
 semicolon. Some examples of HTML character references are shown in Table 3.1.

Lists

Lists can be appropriate ways of structuring certain types of content in an HTML
 document. A list can present short, related items of information in an easy-to-read layout,
and may be nested (i.e. a list inside a list) to produce structures such as tables of contents,
indexes or document outlines. There are three types of list in HTML:

● Unordered lists
● Ordered lists
● Definition lists

Unordered lists

An unordered list is one that is given a list structure but there is no numbering or lettering
to suggest a meaningful sequence. In other contexts, this type of list is known as a
bulleted list. The browser will probably display each item in the list with a bullet symbol
prefix. The tag name for an unordered list element is UL and it can contain any number of
nested LI (list item) elements:

�UL�

�LI� a list item �/LI�

�LI� another list item �/LI�

. . .
�/UL�

Ordered lists

In an ordered list, the list items are numbered or lettered. This is useful for lists that have
a meaningful order, such as instructions, chapters, recipes or league tables. The tag name
for an ordered list is OL, with LI again used for nested list item elements:

�OL�

�LI� the first list item �/LI�

�LI� the second list item �/LI�

. . .
�/OL�

Nesting ordered and unordered lists

Lists can be nested and combined together as appropriate for the content. However there
is an important thing to bear in mind when doing this, which is that any list that is nested

3.6

3.6 LISTS 65

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 65

inside another one must be in its own list item (LI) element, using this kind of structure:

�UL�

�LI� an item in the main list�/LI�

�LI� Here comes a nested list. . .
�OL�

�LI� an item in the nested list�/LI�

�LI� another item in the nested list�/LI�

. . .
�/OL�

�/LI�

�LI� another item in the main list�/LI�

. . .
�/UL�

In this example from the home insurance system domain, we use both ordered and
unordered lists:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE� Making a Claim�/TITLE�

�/HEAD�

�BODY�

�!–– File: example3–3.htm ––�

�H1�Useful Tips�/H1�

�UL�

�LI� Making a Claim
�OL�

�LI�Find as much documentation as you can (photos, receipts, etc.)
�/LI�

�LI� Fill in the on-line claim form�/LI�

�LI� Don’t do anything until an assessor has contacted you�/LI�

�/OL�

�/LI�

�LI�Changing your policy
�OL�

�LI� Log in to your user account �/LI�

�LI� Select ‘update policy details’ from the list of options �/LI�

�LI� Follow the on-screen instructions to make the required changes
�/LI�

�/OL�

�/LI�

�/UL�

�/BODY�

�/HTML�

Figure 3.3 shows how the page looks in Opera 9. You will notice that the main unordered
list has round bullets and the nested ordered lists are labelled with Arabic numbers. This
is the behaviour of the browser, not specified by our list elements.

66 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 66

3.6 LISTS 67

3

Definition lists

Definition lists are a bit different from the other types of list because they are structured
as a glossary of terms. The outer element of a definition list uses the �DL� . . . �/DL�
(definition list) tags. Inside this element appear one or more pairs of terms and definitions.
In each pair, the term is defined by a DT (definition term) element and the definition
appears in a DD (definition list definition) element. Here is an example of an HTML
 document containing a definition list:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Markup Languages�/TITLE�

�/HEAD�

�!–– File: example3–4.htm ––�

�BODY
�DL�

�DT� SGML �/DT�

�DD� Standard Generalised Markup Language �/DD�

�DT� HTML �/DT�

�DD� HyperText Markup Language �/DD�

�DT� XML�/DT�

�DD� eXtensible Markup Language �/DD�

�/DL�

�/BODY�

�/HTML�

Figure 3.4 shows how the definition list looks in Mozilla Firefox 2. In this browser, there
is no difference in the font size or style between the definitions and the terms, only the
layout is affected. We could, however, add EM or STRONG tags to provide some further
semantic differentiation between definitions and terms.

How nested ordered and unordered lists appear in a browserFIGURE 3.3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 67

Attributes in HTML

So far we have seen a number of HTML elements but none of these have included attributes.
Nevertheless many HTML tags can have attributes. Many of these attributes could be
 categorized as presentational, and in fact the use of attributes for presentation in HTML
gives us a good indication of how the usage of elements and attributes differs. Elements are
intended for the content of a document, whereas attributes tend to provide additional
 configuration of these elements. If we regard presentation of an element as part of its
metadata, then we can see that attributes are a good way of applying metadata to HTML
elements. However attributes are not confined solely to defining presentation. They can
also be used for some structural aspects, as we will see in the coming examples.

Images

Having said that we are currently dealing with content and structure rather than
 presentation, it may at first glance seem a little strange to be introducing images.
However, an image in a web page is an instance of a content type, which means that it is
part of the content of the page, not its presentation. It just happens to be content that has
visual characteristics. Images can be added to a web page using the IMG empty element,
but unlike the empty elements (BR and HR) we have seen, IMG elements cannot be used
without attributes. The essential attribute is ‘src’, which indicates the URI of the image
file to be included in the page. The most common image file types used on the web are
GIF (Graphics Interchange Format), JPEG (Joint Photographic Experts Group) and
PNG (Portable Network Graphics), since these have relatively small file sizes and can
therefore be downloaded reasonably quickly. GIF and PNG files are typically used for
drawings, while JPEGs are used for photographs as they can manage more colours than
GIFs and have a more flexible compression algorithm than PNGs. The PNG format was
developed when Unisys held a patent on the GIF compression algorithm, but it is also
 better than GIF files for rendering more than 256 colours, though the equivalent files tend
to be larger than GIFs.

As well as defining the source for the image, we must also provide an alternative text value
using the ‘alt’ attribute. This is useful both for providing a text alternative if the image
 cannot be loaded (for example if the user has disabled image loading in the browser for

3.7

68 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Definition listsFIGURE 3.4

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 68

speed) and for providing text to be read out for those users who are unable to see images.
Here is an IMG element that uses a GIF file as its source:

�IMG src�“logo.gif” alt�“WebHomeCover Logo”�

The other attributes that can be used with images are ‘height’ and ‘width’, which can be
used to scale the image on the page from its original size, but are more often used to
specify the actual dimensions of the image (in pixels) to enable the browser to load the
page faster, since it is able to anticipate the display space required before downloading
the file:

�IMG src�“logo.gif” alt�“WebHomeCover Logo” height�“115” width�“102”�

Links

One of the most important aspects of the World Wide Web is the link, also known as a
hyperlink or a web link, which enables us to go from one web-based resource to another,
regardless of where on the web the other resource may be. A link has two ends known as
anchors, with the source anchor being in the current document and the destination anchor
being the web resource (document, image, sound file, etc.) that is being linked to. Clicking
on a link in a web page lets us retrieve the linked web resource. The full detail of links in
HTML is quite complex, so we cover only the basics here.

The element name used for anchors in HTML documents is A, and the most important
attribute is ‘href ’ (hypertext reference), which contains the URI of the linked resource.
Here, for example is an anchor that links to the URI of the WebHomeCover site:

Click �A href�“http://www.webhomecover.com”�here�/A� for a great
insurance deal. . .

The text in the body of the anchor element (‘here’) is the actual hyperlink that appears in
the browser.

Not all URIs in anchor elements need to include a full web address. Many anchors used in
web applications link to other pages in the same application, so the URI can be a filename
using a local path. Here, for example, the anchor refers to a file in the local directory:

�A href�“aboutus.htm”�About Us�/A�

Relative paths can also be used. Here, we assume that there is an image file stored in an
‘images’ folder beneath the current folder (indicated by the ‘.’):

�A href�“./images/map.gif”�Find Us�/A�

As well as linking to other files, anchors in an HTML page can link to specific parts of a
document. If the target anchor is not a complete URI but within a document, then the
anchor element can be used at the destination end of the link. For example, we might want
to link to a part of a document that contains some terms and conditions about our insur-
ance policies. To link to part of the same document, the URI used in the source anchor is
the name of the destination anchor, preceded by a hash, for example:

�A href�“#terms”�terms and conditions�/A�

3.7 ATTRIBUTES IN HTML 69

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 69

In this example we assume that there is a destination anchor in the same document called
‘terms’. This will be defined somewhere else in the document using the ‘id’ attribute of the
anchor element, for example:

�A id�“terms”�Terms and Conditions�/A�

Clicking on the hyperlink of the source anchor takes the user to the part of the document
containing the destination anchor. The following mark-up shows how the source and
 destination anchors might appear in the same document:

Our insurance is offered according to our standard �A href�“#terms”�terms and
conditions�/A� which you should read carefully before making a claim. . .

blah blah blah. . .

�H2��A id�“terms”�Terms and Conditions�/A��/H2�

WebHomeCover reserve the right to. . .

The same approach can be used when the destination anchor is in part of another
 document. The only difference is that the anchor name is preceded by the URI of the
 containing page, for example:

�A href�“legal.htm#terms”�terms and conditions�/A�

In this case we assume that the ‘terms’ anchor is in another document called ‘legal.html’.
A full address can also be used:

�A href�“http://www.webhomecover.com/legal.htm#terms”�

terms and conditions
�/A�

Images, as well as text, can be used as link anchors by nesting IMG elements inside anchor
elements, for example:

�A href�“home.html”�

�IMG src�“logo.gif” alt�“WebHomeCover Logo”�

�/A�

This is a useful technique for implementing the ‘site logo at top left’ pattern we saw in
Chapter 2, where clicking on the company logo always takes you to the home page.

Email links

Anchors can also be used for email links. To do this you simply use a ‘mailto’ value in the
‘href ’ attribute, which takes this format:

�A href�“mailto:help@webhomecover.com”�Email the help desk�/A�

When ‘Email the help desk’ is clicked, the web browser may open your email client to
compose a message, though this does depend on the browser configuration so its behaviour
cannot be guaranteed.

70 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 70

The following example shows an HTML page that includes both links and images:

�!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd"�

�HTML�

�HEAD�

�TITLE�Our Insurance�/TITLE�

�/HEAD�

�BODY�

�!-- File: Example3-5.htm --�

�P�

�A href�"home.htm"�

�IMG src�"logo.gif" alt�"WebHomeCover Logo" height�"67" width�"294"�

�/A�

�/P�

�H1�Our Insurance�/H1�

�P�

Our insurance is offered according to our standard
�A href�"#terms"�terms and conditions�/A�

which you should read carefully before making a claim
. . . blah blah blah . . .

�/P�

�P�

If you have any enquiries, please
�A href�"mailto:help@webhomecover.com"�

Email the help desk
�/A�

�H2��A id�"terms"�Terms and Conditions�/A��/H2�

�P�

WebHomeCover reserve the right to . . . blah blah blah . . .
�/P�

�/BODY�

�/HTML�

Figure 3.5 shows the page displayed in Internet Explorer 7. To see the effect of the
 internal link, you need to resize the window so that the Terms and Conditions section is
not visible before clicking the ‘terms and conditions’ link.

Tables

Tables can be a useful structural element in a web page. Information can often be displayed
effectively using a table-based format, particularly if the data being presented has been
read from a relational database, since these databases store data in tables. A table consists
of rows and columns, with optional column headings and a caption. Each part of table
(where a row and column meet) is known as a cell (Figure 3.6).

Table tags

In HTML 4, the table is quite a complex element, with a number of nested elements used
to represent the table model which is the underlying table structure. This can be divided

3.8

3.8 TABLES 71

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 71

72 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

into the header, body and footer, and columns can be grouped together. However in this
overview we cover only the basics of tables.

Table elements and rows

A table element in HTML is defined by �TABLE�. . .�/TABLE� tags. The table element
contains all the other table-related tags that specify, for example, captions, headings and
data cells. The CAPTION element is optional, but it can be used to describe the table,
for example:

�CAPTION�Our Call Centres�/CAPTION�

Each row in the table is defined by a table row (TR) element:

�TR�. . .�/TR�

Table cells

There are two types of table cell, those that contain column headings and those that
 contain data. The �TH�. . .�/TH� (table heading) tags can optionally be used to define
heading elements that are used in the top row of the table columns. Other cells are defined
using the �TD�. . .�/TD� (table data) tags.

The components of a tableFIGURE 3.6

Table
rows

Table columns

cell
cell
cell

cell
cell
cell

cell
cell
cell

Links and images displayed in Internet Explorer 7FIGURE 3.5

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 72

Table example

As we work through the various aspects of HTML tables, we develop a simple example of
a table that shows the locations and contact numbers of call centres. For the purposes
of this example we assume that WebHomeCover has call centres in various territories, and
this information will be presented on a web page in the form of a table. The following
 document includes TABLE element for the basic table. There is a caption (‘Our Call
Centres’) and four columns, each with a heading cell: ‘Territory’, ‘Location’, ‘Phone’ and
‘Fax’. There are four rows, one for each call centre.

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Our Call Centres�/TITLE�

�/HEAD�

�BODY�

�!–– File: example3–6.htm ––�

�TABLE�

�CAPTION�Our Call Centres�/CAPTION�

�TR�

�TH�Territory�/TH� �TH�Location�/TH� �TH�Phone�/TH� �TH�Fax�/TH�

�/TR�

�TR�

�TD�Americas�/TD� �TD�New York�/TD�

�TD�0800 1425364�/TD� �TD�0800 1122334�/TD�

�/TR�

�TR�

�TD�EMEA�/TD� �TD�London�/TD�

�TD�0800 1324536�/TD� �TD�0800 8444463�/TD�

�/TR�

�TR�

�TD�EMEA�/TD� �TD�Cape Town�/TD�

�TD�0800 9009586�/TD� �TD�0800 9944474�/TD�

�/TR�

�TR�

�TD�APAC�/TD� �TD�Sydney�/TD�

�TD�0800 1114445�/TD� �TD�0800 1114445�/TD�

�/TR�

�/TABLE�

�/BODY�

�/HTML�

Figure 3.7 shows what the table looks like displayed in a browser. Note that, in this browser
at least (Internet Explorer 7), the table headings are displayed in bold face to differentiate
them from the table data cells.

Table organisation

The organisation of a table can be flexible in the sense that we can choose to leave cells
blank if there is no data available for them and we can also span multiple cells or columns.
To leave cells blank, we can simply remove data from between the TH or TD tags. Just for

3.8 TABLES 73

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 73

74 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

the sake of this example, we might assume that the Cape Town office does not have a fax
number. To leave this cell blank we just remove the data from that cell and replace it with
a non-breaking space character ():

�!–– File: example3–7.htm ––�

�TR�

�TD�EMEA�/TD� �TD�Cape Town�/TD�

�TD�0800 9009586�/TD� �TD� �/TD�

�/TR�

Now the table displays as in Figure 3.8.

Spanning with attributes

Tables include a useful example of how attributes can be used to change the configuration
of an element in HTML. As well as leaving data out of cells we can also make data span
more than one cell. This is done using the ‘rowspan’ or ‘colspan’ attributes that can be
applied to the TD or TH tags. For example colspan�“2” means span two columns and
rowspan�“3” means span three rows. Figure 3.9 shows how these attributes affect the
 structure of the table.

In our example, there are a couple of places where the same data appears in adjacent cells.
EMEA appears twice in the Territory column and the phone and fax numbers for the APAC
office are the same. We might choose to restructure the table so that the same data can
span across multiple cells to avoid repeating the data unnecessarily. In this version of the
table, we use rowspan in the Territory column and colspan in the APAC row:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Our Call Centres�/TITLE�

�/HEAD�

�BODY�

A table displayed in Internet Explorer 7FIGURE 3.7

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 74

�!–– File: example3–8.htm ––�

�TABLE�

�CAPTION�Our Call Centres�/CAPTION�

�TR�

�TH�Territory�/TH� �TH�Location�/TH� �TH�Phone�/TH� �TH�Fax�/TH�

�/TR�

�TR�

�TD�Americas�/TD� �TD�New York�/TD�

�TD�0800 1425364�/TD� �TD�0800 1122334�/TD�

�/TR�

�TR�

�TD rowspan�“2”�EMEA�/TD� �TD�London�/TD�

�TD�0800 1324536�/TD� �TD�0800 8444463�/TD�

�/TR�

�TR�

�TD�Cape Town�/TD� �TD�0800 9009586�/TD� �TD� �/TD�

�/TR�

�TR�

�TD�APAC�/TD� �TD�Sydney�/TD� �TD colspan�“2”�0800 1114445�/TD�

�/TR�

�/TABLE�

�/BODY�

�/HTML�

3.8 TABLES 75

3

Leaving a blank cell in a tableFIGURE 3.8

The effect of rowspan and colspan attributes on table cellsFIGURE 3.9

<TD>…</TD> <TD>…</TD>

<TD>…</TD><TD>…</TD>

<TD colspan="2">…</TD>

<TD
rowspan="3">…
</TD>

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 75

Figure 3.10 shows the table displayed in the browser. The spanned rows are easy to see
because ‘EMEA’ has been centred between the rows. The spanned columns are not so
 obvious because the Sydney number is still aligned to the left. As in many other examples
we have seen, presentational decisions like this are being made by the browser.

Table borders

Changing the border style of a table is presentational, not structural. However at this point
it is useful to introduce a table border so we can see the effect of the spanning attributes
used in the previous example. The width of the table and cell borders can be controlled
using the ‘border’ attribute of the TABLE tag. The value of this attribute defines the width
in pixels of the table and cell borders. By implication, it also sets the frame to have a
 border around it and displays both vertical and horizontal rules around individual cells. The
default value of ‘border’ is ‘0’, meaning that no borders are visible, making it difficult to
see the effect of the horizontal spanning in our table. Here, we set the border value to ‘1’,
which means that each cell has a visible frame:

�TABLE border�“1”�

Making this single change to our previous example changes the browser display as shown
in Figure 3.11 (and the modified source file is ‘example3–9.htm’).

Now we can see that the Sydney phone number spans two cells, whereas the Cape Town
 number does not. Using the presentational ‘frame’ attribute is not the best approach, how ever.
We will see how to manage table presentation using style sheets in the next chapter.

Forms

Forms are a very important part of any web application, because they allow the user to send
information to an application running on the server. Much of the user interaction on the
web is based on HTTP ‘GET’ requests, which enable a client to request data from a
 server. In contrast, forms enable an HTTP ‘POST’ request to be made, which sends data

3.9

76 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

The effect of spanning cells in a tableFIGURE 3.10

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 76

from a client to a server. As we saw in Chapter 2, a form is part of an HTML page, which
submits its data to a server page (Figure 3.12).

Form elements

Forms are defined in HTML using the FORM element. Form attributes include the
‘method’ attribute, which defines the type of HTTP request that is to be used (usually
‘post’ for a form) and the ‘action’ attribute, which specifies a URI to identify which
 server-side component is to receive the data from the form. In this example, we assume
that the server-side process is called ‘insuranceQuote’. Programs that run on the server
 to process forms may be written using any of a number of server side technologies,
 including Java servlets or JavaServer Pages (JSPs), Active Server Pages (ASPs), Perl or
PHP, among others. Of course in this book, we will be implementing these processes
in PHP.

Here is a FORM element with an action and a method:

�FORM action�“insuranceQuote” method�“post” �

. . .components of the form
�/FORM�

As with links, the URI used in the form does not have to be a complete URI if the page
containing the form is from the same web application as the component that is receiving
the form data.

3.9 FORMS 77

3

The table with visible cell framesFIGURE 3.11

Forms are part of client pages and submit their content to
server pages

FIGURE 3.12

«post»

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 77

The ‘method’ attribute of the form element specifies how the browser transfers HTML
form data to a server program. The most common methods used with forms are ‘post’ and
‘get’, but ‘post’ is preferable. ‘get’ requests are the default type of HTTP request, but are
mainly intended for getting data from the server, for example requesting an HTML page
to be downloaded. Therefore although a ‘get’ request can involve sending some data to the
server (e.g. the identity of the request page or the parameters for a search query), only a
small amount of data needs to be sent to the server. Because of this, only a limited amount
of data can be transferred to the server using this request type (240 characters on some
web servers). There are also some security issues associated with ‘get’ requests, since all
parameter data is attached to the URL. Consequently it is visible in the browser address
bar, so the URL, including the parameter data, can be ‘bookmarked’ and used again.

In contrast, when using the ‘post’ method, an unlimited amount of data can be transferred,
URLs cannot be ‘bookmarked’ and form data is hidden from the user.

78 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

Although there is no specific limit on the size of the data that can be
sent with a post request, servers may be configured to limit the
 actual amount of data that can be posted. This may be necessary to
prevent denial of service attacks, where large amounts of data could
be posted to a server to overwhelm its resources.

NOTE

In addition to the ‘get’ and ‘post’ methods, there are several other lesser-used methods
(mostly used by web browser software to obtain document information from the web server).
These are ‘head’, ‘delete’, ‘put’, ‘trace’ and ‘options’. These can occasionally be useful but
are often not implemented by web applications, so attempting to use these methods may
return HTTP response error number 501, the ‘not implemented’ error.

Input types

Inside the FORM element we define the components of the form. These components
enable the user to input data, so include things such as text fields, radio buttons, check
boxes and select lists. Components that enable input are known as controls. Many of these
controls are specified using the empty INPUT element, with the specific type of compo-
nent defined by the ‘type’ attribute. Another essential attribute is ‘name’, which is used to
 identify the source of the data entered by the user when it is sent to the server. For
 example, we might have a text field in a form that is used to enter a person’s email address.
The type of the input element would be ‘text’ and the name of the element might
be ‘email’ (or something similar). This name can be used by the server-side application
to retrieve whatever the user typed into that text field. This is how the element might
be written:

�INPUT type�“text” name�“email”�

There are other attributes that may also be used in the INPUT element. For example,
there is a ‘value’ attribute that can be used to give a default value to an input type:

�INPUT type�“text” name�“email” value�“email@address”�

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 78

3.9 FORMS 79

3

Another simple input type is ‘password’. This is similar to a text field, but when
 characters are typed into the field they appear on the screen as some other character, such
as an asterisk:

�INPUT type�“password” name�“pword”�

Each control can have a text label associated with it, using the LABEL element. A label
must be associated with a control, or group of controls, using the ‘for’ attribute, which
must match the ‘id’ attribute of a control on the form. Therefore if we want to use the
LABEL tag with a form control then the control will need an ‘id’ attribute as well as a
name. Here, for example, is a label for the password input type with the id ‘pword’:

�LABEL for�“pword”�Password:�/LABEL�

This would mean the element for the password input would need to include this id:

�INPUT type�“password” name�“pword” id�“pword”�

Associating a label with a control does not affect its position in the form; you have to
 organize that manually. However, it does have the effect that if you click on the label in
the browser, the associated control immediately gets focus.

One essential component of any HTML form is an INPUT element of type ‘submit’. This
adds a button to the form that enables the form data to be sent in an HTTP request to the
server. When the submit button is pressed, the ‘action’ attribute of the form is used to direct
the HTTP request to the appropriate server-side resource. A form must have a ‘submit’
 button in order to invoke its action, unless the HTTP request is managed by a client-side
scripting language such as JavaScript, in which case the script may submit the form data.

Forms may also have a reset button, defined by an INPUT element with a type of ‘reset’.
Pressing the reset button returns the components in the form to their default values,
though it is debatable whether reset buttons provide any real benefit from the users’
 perspective. In general, a reset button should only be used on a form if it has a useful and
valid set of default values. For both submit and reset input types, the ‘value’ attribute can
be used to provide a text label for the button.

Here is a very simple page with a login form that uses labels, text and password input types,
and submit and reset buttons. Here we assume that there is a server-side component called
‘login’ to which the form submits its data. The form includes a table to help to organize
the components into a neat layout.

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Customer Login�/TITLE�

�/HEAD�

�BODY�

�!–– File: example3–10.htm ––�

�FORM action�“login” method�“post”�

�TABLE�

�TR�

�TD��LABEL for�“loginid”�Login Name:�/LABEL��/TD�

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 79

80 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

�TD��INPUT type�“text” name�“loginid” id�“loginid”��/TD�

�/TR�

�TR�

�TD��LABEL for�“pword”�Password:�/LABEL��/TD�

�TD��INPUT type�“password” name�“pword” id�“pword”��/TD�

�/TR�

�TR�

�TD��/TD�

�TD�

�INPUT type�“submit” value�“Login”�

�INPUT type�“reset” value�“Clear form”�

�/TD�

�/TR�

�/TABLE�

�/FORM�

�/BODY�

�/HTML�

Figure 3.13 shows how the form appears in Internet Explorer 7. Of course, pressing the
‘Login’ button simply gives an HTTP ‘404 not found’ error, since we are not yet running
anything on the server.

There are several other input types used in HTML forms. Two related types are checkboxes
and radio buttons. The only difference between these is that checkboxes are always
 independent of any other component, whereas radio buttons can be grouped together so
that only one radio button in a given group can be selected at any one time. A checkbox is
defined by setting the INPUT element’s ‘type’ attribute to ‘checkbox’. Here we use a
checkbox to indicate whether a user wishes to be added to a mailing list. A checkbox
 effectively represents a Boolean value; it is either checked (true) or not (false).

�INPUT type�“checkbox” name�“mailinglist”�

A check box is unchecked by default. However we can change this by setting the value of
the ‘checked’ attribute to ‘checked’.

A form displayed in Internet Explorer 7FIGURE 3.13

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 80

�INPUT type�“checkbox” name�“mailinglist” checked�“checked”�

Radio buttons are similar to checkboxes, in the sense that they may either be selected or
not, but can be grouped together by having a common value for the ‘name’ attribute. In
the next example, we use radio buttons to ask the user if they want to use our web site
as a guest, set up a new account or log in using an existing account. Because the name
for all three radio buttons is ‘status’, they will be treated as a group so that only one of
these buttons can be selected at any one time. The ‘value’ attribute defines the value
that will be sent to the server if that particular radio button is selected when the form
is submitted. By default, the ‘login’ radio button is be selected because its ‘checked’
attribute has been set to ‘checked’. Here are the INPUT and LABEL elements used for
the three radio buttons:

�INPUT TYPE�“radio” name�“status” id�“guest” value�“guest”�

�LABEL for�“guest”�Access the site as a guest�/LABEL�

�INPUT TYPE�“radio” name�“status” id�“new” value�“new”�

�LABEL for�“new”�Set up a new user account�/LABEL�

�INPUT TYPE�“radio” name�“status” id�“login” value�“login”
checked�“checked”�

�LABEL for�“login”�Login using an existing account�/LABEL�

3.9 FORMS 81

3

Since the ‘id’ attribute for a radio button must have a unique value
in a page it cannot have the same value as the ‘name’ attribute.
The approach used here is to give the ‘id’ and ‘value’ attributes
the same values.

NOTE

Here is a page that includes our example of radio buttons and a check box. Both the
 submit and reset buttons have default values for their ‘value’ attributes, which not surpris-
ingly are ‘Submit’ and ‘Reset’. In this example, we have omitted the ‘value’ attribute for
the reset button, so its label will be the default (‘Reset’).

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�Site Access�/TITLE�

�/HEAD�

�BODY�

�!–– File: example3–11.htm ––�

�FORM action�“siteaccess” method�“post”�

�TABLE�

�TR�

�TD colspan�“2”�

Welcome to our site. How would you like to continue?
�/TD�

�/TR�

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 81

82 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

�TR�

�TD�

�INPUT TYPE�“radio” name�“status” id�“guest” value�“guest”�

�/TD�

�TD��LABEL for�“guest”�Access the site as a guest�/LABEL��/TD�

�/TR�

�TR�

�TD��INPUT TYPE�“radio” name�“status” id�“new”
value�“new”��/TD�

�TD��LABEL for�“new”�Set up a new user account�/LABEL��/TD�

�/TR�

�TR�

�TD�

�INPUT TYPE�“radio” name�“status” id�“login” value�“login”
checked�“checked”�

�/TD�

�TD�

�LABEL for�“login”�Login using an existing account�/LABEL�

�/TD�

�/TR�

�TR�

�TD colspan�“2”�

�LABEL for�“mailinglist”�Please check this box if you would
like to be added to our mailing list�/LABEL�

�/TD�

�TD�

�INPUT type�“checkbox” name�“mailinglist”
id�“mailinglist” checked�“checked”�

�/TD�

�/TR�

�TR�

�TD��/TD�

�TD�

�INPUT type�“submit” value�“Continue”�

�INPUT type�“reset”�

�/TD�

�/TR�

�/TABLE�

�/FORM�

�/BODY�

�/HTML�

Figure 3.14 shows the page with radio buttons and a checkbox displayed in Opera 9.

Text areas

Text areas, which allow the input of multiple lines of text, do not use the INPUT element
but are defined by a TEXTAREA element. This element includes optional attributes to set
the number of rows and columns of text (the ‘rows’ and ‘cols’ attributes). The text typed
into a TEXTAREA automatically wraps at the end of a line. If any text is added to the body
of the element, then it appears inside the text area, as in this example

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 82

�TEXTAREA name�“description” rows�“5” cols�“30”�

Describe your insurance claim here
�/TEXTAREA�

Figure 3.15 shows the TEXTAREA with its default text being displayed.

Select lists

Select lists can be used to choose one or more options from a list. The list can be drop
down, scrollable or just a list of items, and can optionally enable multiple items to be
selected. A select list comprises a SELECT element and one or more nested OPTION
 elements. Each OPTION has a ‘value’ attribute that specifies which value is sent to the
server if that option is selected when the form is submitted. The body of the OPTION
 element contains the text that is used when displaying that option in the list. In this
 example, a select list is used to choose an amount of insurance cover. The default format
for this will be a drop-down list.

3.9 FORMS 83

3

A form with radio buttons and a checkboxFIGURE 3.14

A TEXTAREA component with some default textFIGURE 3.15

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 83

�SELECT name�“cover”�

�OPTION value�“10000”�10,000�/OPTION�

�OPTION value�“20000”�20,000�/OPTION�

�OPTION value�“30000”�30,000�/OPTION�

�OPTION value�“50000”�50,000�/OPTION�

�OPTION value�“100000”�100,000�/OPTION�

�/SELECT�

To create a scrolling or complete list rather than a drop-down, we can use the ‘size’ attribute
of the SELECT element. If we set the size to ‘1’, this is the default and creates a drop-
down list. Anything larger will create a list with a scroll bar (if the size is less than the total
number of options) or a simple list, if the size is greater than or equal to the number of
options. In our example, this opening tag would create a list with a scroll bar:

�SELECT name�“cover” size�“3”�

And this would create a non-scrolling list because there are five options:

�SELECT name�“cover” size�“5”�

Figure 3.16 shows how the select list would appear using the three size settings.

84 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

3

A SELECT component controlled by the value of the ‘size’ attributeFIGURE 3.16

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 84

Exercises

In this series of exercises, we develop some pages for the home insurance web site. At this
stage, we are only looking at static pages that might be used to introduce and explain the
site, not the web application processes making claims or buying insurance.

3.1 Using HTML, implement the content and structure of the home page from the
design you created at the end of Chapter 2.

3.2 Using HTML, implement an ‘about us’ page for the web site that uses the three-
region layout you designed at the end of Chapter 2. Use a table to implement this
layout (we will see how to do this layout with a style sheet in Chapter 4). You will
need a reasonable amount of content on this page, which should include different
types of information such as ‘our history’, ‘our mission’, ‘our people, etc.

3.3 Create a company logo using a suitable software package and use it in your three-
region layout (you may also wish to include images from other sources).

3.4 Figure 3.17 shows an HTML form from the home insurance application, to gather
data about contents insurance. Write an HTML page that creates a form similar to
this one.

SUMMARY 85

We began this chapter by introducing SGML, the mark-up language from which HTML
and many other mark-up languages have evolved. We followed the evolution of HTML
through to version 4, and then looked at some of the most important elements used for
structuring HTML documents, including headings, lists, tables and forms. Table 3.2
 provides a summary of the HTML elements introduced in this chapter, while Table 3.3
 summarizes the new terms that were also introduced.

SUMMARY

An HTML form organized using a tableFIGURE 3.17

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 85

86 CHAPTER 3 STRUCTURE AND CONTENT IN HTML

HTML elements introduced in this chapterTABLE 3.2

Element Meaning

HTML The root element that surrounds the whole document
HEAD Document header information
TITLE The text that appears in the browser’s title bar
BODY The body content of the page displayed in the browser
P Paragraph
HI, H2 H3, H4, H5 and H6 Levels of heading
BR Line break
HR Horizontal rule
CITE Citation
BLOCKQUOTE Block quotation
EM Emphasis
STRONG Strong emphasis
SUB Subscript
SUP Superscript
UL Unordered list
LI List item
OL Ordered list
DL Definition list
DT Definition list term
DD Definition list definition
IMG Image
A Anchor
TABLE Table
CAPTION Table caption
TR Table row
TH Table heading
TD Table data
FORM Form
INPUT Form component for inputting data
LABEL Text label for a form component
TEXTAREA Multi-line text entry box
SELECT Select list
OPTION An option in a select list
& ; Character reference (start and end characters)
�!-- --� Comment text (start and end characters)

Terms introduced in this chapterTABLE 3.3

Acronym term Meaning

ANSI American National Standard Institute
GML Goldfarb, Mosher, Lorie
ISO International Standards Organisation
MIME Multipurpose Internet Mail Extension
SGML Standard Generalized Markup Language

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 86

References and further reading

Connolly, D. (1995). HTML 2.0 Materials. W3C. http://www.w3.org/MarkUp/html-spec/
Goldfarb, C. (1996). The Roots of SGML – A personal recollection. http://www.

sgmlsource.com/history/roots.htm
Korpela, J. (2002). Empty Elements in SGML, HTML, XML, and XHTML.
http://www.cs.tut.fi/~jkorpela/html/empty.html
Raggett, D., Le Hors, A. and Jacobs, I. (1999). HTML 4.01 specification.

http://www.w3.org/TR/html401/

REFERENCES AND FURTHER READING 87

3

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 87

Stobart-03.qxp:Stobart-03 11/7/07 5:50 PM Page 88

89

CHAPTER 4

Styling in the Presentation Layer:
Cascading Style Sheets (CSS)

LEARNING OBJECTIVES

● To be able to apply in-line styles to HTML elements

● To be able style individual HTML pages using cascading style sheets (CSS) in
the document head

● To be able to create external CSS files and link them to multiple HTML
pages

● To be able to apply style sheet cascades to individual documents

● To be able to use CSS to control the layout of a web page

In Chapter 3 we concentrated on looking at some of the important structural elements in HTML.
HTML also provides a range of elements and attributes that support the presentation of a
 document, including text styles and fonts, foreground and background colours, content alignment,
and list and table formatting. Using this type of mark-up, however, mixes presentation with
 structure and content, making it hard to separately develop and maintain the presentation layer
of a web application. A much better approach is to use cascading style sheets (CSS) to apply
 presentational formatting independent of the HTML mark-up. In this chapter, we explore the
 syntax and use of cascading style sheets and see how they can be applied to HTML pages.

Separating out presentation

HTML 4.0 was the first version of HTML that explicitly attempted to separate out
 structure from presentation. Although the LINK element, used for attaching a separate

4.1

INTRODUCTION

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 89

90 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

style sheet to an HTML document, had been available since early versions of HTML, it was
rarely used. In this section, we see how HTML developed into a mark-up language that
included presentational tags, explore the development of separate style sheets and see how
CSS can be used to separate out the presentation of an HTML document from its content
and structure.

In Chapter 3 we looked at HTML syntax and saw how HTML is used to specify the
 content and structure of a web page. Structural elements of HTML pages include elements
such as paragraphs, headings and tables. Although HTML also has presentational elements
and attributes, it is preferable that any specification of style (colours, font sizes, etc.) is
done separately by using a style sheet language. Why, then, does HTML have presentational
tags if we are not supposed to use them? This is in fact a consequence of the way that web
technologies have evolved, through a combination of influential individuals, browser vendors
and standards bodies. These various influences meant that the separation of structure
and content for presentation using style sheets was an approach that developed rather
 erratically. In the early days of HTML, there was some debate about how HTML should be
styled, and whether it should be based on browser configuration or some other mechanism.
Although it was always recognized that it would be good practice to separate the content
of a page from the specification of its presentation, there was no common agreement on
how this should be done. There was also some debate as to who should have control over
the appearance of a document, the author, the viewer, or a combination of both. Various
early browsers had their own ways of applying style sheets to manage the appearance
of HTML documents, but this was from the perspective of controlling the way that
 documents were configured in a given browser. It did not enable the author of an HTML
page to specify how it should be presented. To address this issue, HTML tags that related
to presentational aspects began to be supported by browsers. For example, the first version
of Netscape Navigator in 1994 supported the CENTER element. Since the early HTML
specifications were simply a drawing together of syntax that was already being used by the
leading browsers, the introduction of such tags led to their subsequent inclusion in the
 standard HTML specification. However, around the same time that Netscape Navigator was
introducing the first presentational HTML tags, Häkon Lie at CERN published the first
 proposal for what he called ‘cascading HTML style sheets’ (Lie and Bos 1999). The concept
of the cascade was that an HTML document could be presented using an ordered list of
style sheets, so that there might be a number of different style sheets applied one after
the other to a given HTML document, each providing more specialized formatting. Lie’s
 proposal contained the idea of the LINK element in an HTML document that provides the
URL of a separate style sheet. The original version of this proposal looked like this:

�LINK REL�“style” HREF�“http://NYT.com/style”�

As the idea of style sheets was debated by the web technology community it became clear
that they need be applicable not only to HTML but to other types of document as well.
The reference to HTML was dropped and they were renamed simply Cascading Style
Sheets (CSS). Although there were alternative proposals for style sheet technologies made
around that time, CSS became the clear leader after the formation of the World Wide Web
Consortium in 1995, which held an international workshop on CSS. This was followed in
1996 by the first W3C recommendation, CSS level 1, with support from the leading
browsers of the time, Microsoft Internet Explorer and Netscape Navigator, though the
implementations in both at that stage were limited, neither of them fully implementing the
level 1 specification. The next version, CSS level 2, was published in 1998 and CSS level 3
is an ongoing recommendation.

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 90

4.2 CSS SYNTAX 91

4

We have talked about the need to separate structure and content from presentation, but
why is this so important? Specifying the appearance of the pages in a web site is not only an
issue for graphic designers, but is also a management problem. It is important to maintain a
uniform appearance across the pages of a web site, while indicating the differences
between the various concerns of the site in an organized way. For example, different colour
schemes might be used in different parts of a web site. An associated issue is that it should
be possible to change the appearance of a web site consistently across all pages without
having to undertake a major maintenance exercise.

How, then, does CSS help us to manage the presentation of a web application in a way that
enables us to apply a consistent look and feel, with customisation for different parts of our
web site, and make it easy to change? CSS does this by providing the ability to specify style
information in-line, internal to a document or externally. This means that styles can be
applied at different levels of granularity: across the whole web site, to a specific page, or to
a specific element. CSS also provides the ability to cascade a series of style sheets to apply
to a single document, enabling a combination of styles to be blended together.

CSS syntax

CSS syntax can vary slightly, depending on where it is being used. In-line styles, internal
style sheets and external style sheets each involve a particular type of syntax, though all are
similar.

The simplest way to use CSS is with inline styles, which is where styles are added directly
to HTML elements using the ‘style’ attribute. The value of this attribute consists of two
parts separated by a colon. The first part is the style property that is being applied, the sec-
ond the actual value of that property. For example, one of the style properties is ‘color’ (the
foreground, text, colour) and one of the possible values for that property is ‘blue’. Here,
we set the style of an H1 element to be the colour ‘blue’.

�H1 style�“color: blue”�Heading�/H1�

4.2

The space after the colon is used here to aid readability, it is not
required.NOTE

The colour value ‘blue’ is one of the 16 colour names specified in the W3C HTML 4.0
standard: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red,
 silver, teal, white, yellow.

A large number of other colour names are also recognized by many browsers and, in
 addition to the named colours, you can ‘mix’ your own using red, green, blue (RGB)
 values in this property format:

color: rgb(r, g, b)

In this format, each of the three colour values is specified by an integer in the range 0 to 255,
each of which represents the intensity of the red, green, or blue component of the

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 91

92 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

desired colour. Using the maximum values for all three, ‘color: rgb(255,255,255)’ gives
white, while zero values for all three, ‘color: rgb(0,0,0)’ gives black.

Style sheets can also be used to set the background colour, using the ‘background-color’
property. In this example we set the text colour to white and the background colour to
black. If we are applying multiple styles to a single element, the styles are separated by
semicolons, as we can see here:

�H2 style�“color: white; background-color: black”�Sub heading�/H2�

If we use in-line styles in an HTML document, we should indicate to the browser which
stylesheet language we are using. Although the default is CSS, the specification states that
‘Documents that include elements that set the style attribute but which don’t define a
default style sheet language are incorrect.’ (Raggett et al. 1999)

Therefore we should add the following META element to the HEAD element, declaring
‘text/css’ as the style type:

�META http-equiv�“Content-Style-Type” content�“text/css”�

There are many possible attributes that can be used with the META
element, which provides various types of information about the
 document that includes it. A single HEAD element can contain
 multiple META elements.

NOTE

In this example we add the necessary META tag and apply in-line styles to an H1 element
and two H2 elements. The second H2 style demonstrates the RGB colour syntax to
 specify white text on a black background, though the effect is exactly that same as the first
H2 element style, which uses the standard colour names to achieve the same effect. The
style elements appear in bold type:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�META http-equiv�“Content-Style-Type” content�“text/css”�

�TITLE�Our Insurance Cover�/TITLE�

�/HEAD�

�BODY�

�!–— File: example4–1.htm –—�

�H1 style�“color: blue”�

We provide the following types of insurance�/H1�

�H2 style�“color: white; background-color: black”�

Buildings Cover�/H2�

�P�You may think you’re “safe as houses” but you’d be surprised how many
things can damage the building you live in. Fires, earthquakes, subsidence, runaway
trucks, cricket balls through windows or the occasional meteor. Best to be
 covered!

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 92

4.2 CSS SYNTAX 93

4

�/P�

�H2 style�“color: rgb(255,255,255); background-color: rgb(0,0,0)”�

Contents Cover�/H2�

�P�You may not realise just how much the stuff you have would cost to replace.
If the burglars move in while you’re on holiday, could you afford to replace the
TV, the stereo, the chairs, the cupboards, the crockery, etc?

�/P�

�P�Not only that, our contents cover means that if you have your bike stolen,
drop the vase your mother-in-law gave you as a wedding present, lose your camera,
leave your glasses on the train or have your mobile phone stolen, you’ll be fully
compensated.

�/P�

�/BODY�

�/HTML�

Figure 4.1 shows how the styled page appears in Internet Explorer 7.

In the early days of web page design, a 216-colour ‘browser-safe
palette’ was proposed that indicated which combinations of colours
would work best across multiple browsers in a world where many
computers supported only 8-bit colour (256 colours). The ‘safe’ palette
eliminated the 40 colours that were most likely to vary on different
 displays. However in the vast majority of cases this limitation no longer
applies so the safe palette is largely redundant (Weinman, 2007).

In-line styles applied to an HTML documentFIGURE 4.1

NOTE

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 93

94 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

Style sheets

Using only in-line styles inside tags has no real benefit over using presentation elements and
attributes from standard HTML. Although we are using a different syntax, we do not
 actually separate out structure and content from presentation, and do not gain any of the
benefits of applying a generic style to a document. Styles only become useful when they
are also applied to a whole document, so that we can, for example, apply a standard style
to all H1 elements in a document rather than doing this on an individual basis. In this
 context, in-line styles are useful for fine-tuning the presentation but should not be used to
style a whole document. Applying styles more generally is done using style sheets, either
internal to the HTML page or as external documents, linked to the HTML page using the
LINK element. First, we look at how to include a style sheet inside an HTML page.

Internal style sheets

Internal style sheets are those that are included in the HEAD element of an HTML document
using the STYLE element. This type of style sheet applies only to that document. For CSS,
the value of the STYLE element’s ‘type’ attribute is set to ‘text/css’, as it is when using the
META element for in-line styles.

�STYLE type�“text/css”�

. . . styles defined here
�/STYLE�

The syntax for defining styles in a STYLE element is similar to the inline style, except that
we must also specify to which element types we are applying styles. Each component of a
style sheet is made up of three parts:

● The name of an HTML element type
● The name of a presentational property of that element
● The value of the property that is to be applied.

The property and its value appear inside braces (separated by a colon, as they are for inline
styles):

element {property: value}

For example, if we want to change all of the H1 (main heading) elements so that they are
styled in blue, we can add the following style element:

�STYLE type�“text/css”�

h1 {color: blue}
�/STYLE�

Note that we will be using lower case for element names in our CSS because we will be
applying them to XHTML pages later. In XHTML, element names must be in lower case.
For HTML, which is not case-sensitive, the case used in the style sheet does not matter.

The difference between our in-line example and this style is that this one will apply to all
‘h1’ elements in the page that is being formatted. Sometimes we will want to apply more
than one style to a particular element type, in which case we can separate the different

4.3

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 94

4.3 STYLE SHEETS 95

4

styles using semicolons. For example, if we want to make our main headings both blue and
centred, we could use the following style (with ‘text-align’ the additional property and
‘center’ the chosen value):

�STYLE type�“text/css”�

h1 {color: blue; text-align: center}
�/STYLE�

The other possible values for the ‘text-align’ property are ‘left’, ‘right’
and ‘justify’.NOTE

Grouping styles

As well as applying multiple styles to a single element type, we might want to apply the
same style(s) to more than one type of element. Here, for example, we use the centred,
blue style for both main headings (h1) and subheadings (h2) by putting them together in
a comma-separated list:

�STYLE type�“text/css”�

h1,h2 {color: blue; text-align: center}
�/STYLE�

Line feeds and spacing can be used to make style sheets more readable, without having an
effect on their processing, as in this example:

�STYLE type�“text/css”�

h1,h2
{

color: blue;
text-align: center

}
�/STYLE�

Further text formatting styles

So far we have seen styles that can be applied to text that affect the color and alignment.
Other CSS text formatting styles include ‘font-style’, ‘font-weight’, ‘font-size’ and ‘font-
family’. A common value to use with the ‘font-style’ property is ‘italic’, while a common
value of the ‘font-weight’ property is ‘bold’. The value of the ‘font-family’ property can be
one of many font names, but you are dependent on the browser having that font family
available, so using unusual font families is not a good idea if you want your pages to look
consistent across a wide range of browsers. There are five generic font families that should
be supported by any browser: ‘serif ’, ‘sans-serif ’ ‘cursive’, ‘fantasy’ and ‘monospace’. The
browser should provide a font mapping for all of these font families, but the actual
 mapping is browser-specific. We can see this from Figure 4.2, which shows the same page
of text using the five generic font families displayed in three browsers. The differences in
appearance are because the generic font families have been mapped to different actual
fonts by the different browsers.

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 95

96 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

The five generic font families displayed by a) Mozilla Firefox 2,
b) Opera 9 and c) Internet Explorer 7

FIGURE 4.2

Since using the generic font families is somewhat unpredictable in terms of the specific
font being used, we may prefer to specify actual font names. Some widely supported fonts
include ‘Times New Roman’ (a serif font), ‘Arial’ (a sans-serif font) and ‘Courier’ (a mono-
spaced font). If the name of a font family contains spaces then it should be put inside
quotes or apostrophes, for example:

font-family: ‘Times New Roman’

Figure 4.3 shows some text using these three fonts in the three browsers. Note how they
all look very similar.

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 96

4.3 STYLE SHEETS 97

4

ContinuedFIGURE 4.2

The Times New Roman, Arial and Courier fonts displayed by
a) Mozilla Firefox 2, b) Opera 9 and c) Internet Explorer 7

FIGURE 4.3

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 97

98 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

Applying multiple styles with the STYLE element

The body of the STYLE element can contain as many style entries as is required for the
HTML document. In the following example, we apply different styles to all H1, H2 and
P elements. The H1 element is formatted as we have seen in a previous example (blue,
centered). The H2 element is formatted using the ‘red’ value for the ‘color’ property, and
also uses the ‘font-style’ property, setting its value to ‘italic’. Finally, the paragraph (P)
 elements are styled using the ‘font-family’ property and the ‘sans-serif ’ value. Depending
on the browser’s built-in style, this may make the paragraphs appear in a different font
from the headings.

The important point to note here is that defining the styles in one place, rather than attaching
them to specific HTML elements, means that each style only has to be defined once for
each element type. In this example we define the paragraph style once, but it is used three
times. The H2 style is defined once, but it is used twice.

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�STYLE type�“text/css”�

h1{color: blue; text-align: center}
h2{color: red; font-style: italic}
p{font-family: sans-serif}

�/STYLE�

�TITLE�Our Insurance Cover�/TITLE�

�/HEAD�

�BODY
�!–– File: example4–2.htm —–�

�H1�We provide the following types of insurance�/H1�

�H2�Buildings Cover�/H2�

�P�You may think you’re “safe as houses” but you’d be surprised how many
things can damage the building you live in. Fires, earthquakes, subsidence, runaway
trucks, cricket balls through windows or the occasional meteor. Best to be covered!

�/P�

�H2�Contents Cover�/H2�

ContinuedFIGURE 4.3

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 98

4.3 STYLE SHEETS 99

4

�P�You may not realise just how much the stuff you have would cost to replace.
If the burglars move in while you’re on holiday, could you afford to replace the
TV, the stereo, the chairs, the cupboards, the crockery, etc?

�/P�

�P�Not only that, our contents cover means that if you have your bike stolen,
drop the vase your mother-in-law gave you as a wedding present, lose your camera,
leave your glasses on the train or have your mobile phone stolen, you’ll be fully
compensated.

�/P�

�/BODY�

�/HTML�

Figure 4.4 shows how the page looks in Internet Explorer 7.

Setting the font size

The size of the font can be set using a number of different types of measurement, including
absolute measures in inches, centimetres, millimetres, points or picas. However, setting
sizes to specific measurements is not very flexible across different browser contexts, and
should only be used in specialized applications where the target client device is known.
This is not the case for most web applications, so the better approach is to use a relative
method of sizing text. Even here, there is more than one option: we can use a
 percentage measure (%), a pixel measure (px), the ‘x height’ of the font (x) or ‘em’

Styles applied to multiple headings and paragraphsFIGURE 4.4

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 99

100 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

which relates to the both the width and height of the font. Apart from pixels, all of these
work in a way that is relative to the context within which an element is used. If we apply
a relative size to an element of a specific type (for example, a paragraph element), then
the actual size is based on the one that would normally be applied. In other words,
 setting a paragraph’s font to be 1.5em would make it half as big again as the normal font
size for that paragraph:

�P style�“font-size: 1.5em”�

It is also possible to use more generic descriptions of text size, including ‘large’, ‘small’,
‘x-large’ (extra large) and ‘x-small’ (extra small), for example:

�P style�“font-size: large”�

External style sheets

Using an internal style sheet has the advantage that we only need to define a style for each
type of element once, rather than every time it appears, as we would have to do if we were
using in-line styles. However, the drawback of internal style sheets is that the styles we
define can only be used in the current HTML document. It is likely that we would want to
apply the same styles right across our web application, so that all of our pages have a con-
sistent look and feel. If, for example we want all our major headings on all pages to be
blue and center-aligned, we would have to repeat this style in an internal style sheet for
every single page. Worse, if we decided to change the look and feel so that all major head-
ings were, for example, to be made left-aligned, we would have to change the internal
style sheet on every page. Fortunately, we can specify an external stylesheet in a separate
document and use the LINK element (in the HTML document’s HEAD element) to
apply the required stylesheet. The name and location of the stylesheet is specified by the
‘href ’ attribute, and the relationship between the HTML page and the stylesheet by the
‘rel’ attribute. The value of the ‘rel’ attribute should be set to ‘stylesheet’.

Another possible value for the ‘rel’ attribute is ‘alternate stylesheet’,
where the browser may enable switching between different
stylesheets, provided more than one stylesheet LINK element is
include in the HEAD element. However this option is poorly supported
by current browsers.

NOTE

There is also a ‘type’ attribute that indicates the type of the linked document. As with the
internal style sheet, the value of the ‘type’ attribute for a stylesheet is ‘text/css’. There are
some other attributes that may be used in the LINK element but we do not need to be
concerned with them here. Taking our previous internal style sheet example, the content
of the STYLE element can be extracted into a separate CSS file, which would simply list
the styles (STYLE tags are not required in an external style sheet). Here is our external
CSS file, which we will call ‘webhomecover.css’:

h1{color: blue; text-align: center}
h2{color: red; font-style: italic}
p{font-family: sans-serif}

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 100

4.3 STYLE SHEETS 101

4

To apply this style sheet to an HTML page, we need to add the appropriate LINK
 element to the page’s HEAD element. This LINK example specifies the ‘webhomecover.
css’ file:

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

This example assumes that the CSS file is in the same folder (either locally or on the web
server) as the HTML file. Otherwise the value of the ‘href ’ attribute could be written to
include a directory pathway or a full URL, depending on the circumstances.

Here is our previous example HTML page but using an external style sheet instead of an
internal one.

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�TITLE�Our Insurance Cover�/TITLE�

�/HEAD�

�BODY�

�!–– File: example4–3.htm ––�

�H1�We provide the following types of insurance�/H1�

�H2�Buildings Cover�/H2�

�P�You may think you’re “safe as houses” but you’d be surprised how many
things can damage the building you live in. Fires, earthquakes, subsidence, runaway
trucks, cricket balls through windows or the occasional meteor. Best to be covered!

�/P�

�H2�Contents Cover�/H2�

�P�You may not realise just how much the stuff you have would cost to replace.
If the burglars move in while you’re on holiday, could you afford to replace the
TV, the stereo, the chairs, the cupboards, the crockery, etc?

�/P�

�P�Not only that, our contents cover means that if you have your bike stolen,
drop the vase your mother-in-law gave you as a wedding present, lose your camera, leave
your glasses on the train or have your mobile phone stolen, you’ll be fully compensated.

�/P�

�/BODY�

�/HTML�

Once we have a separate style sheet, we can use it with multiple HTML pages. Here, we
apply the same style sheet to a different page:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�TITLE�Our Promise to You�/TITLE�

�/HEAD�

�BODY�

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 101

102 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

�!–– File: example4–4.htm ––�

�H1�Our Promise to You�/H1�

�H2�No Unreasonable Exclusions�/H2�

�P�

Many insurance companies include many exclusions in their policies, making it
 difficult to claim for events such as ‘acts of God’, terrorism or subsidence. We
have the smallest set of exclusions of any fictional insurance company.

�/P�

�H2�Rapid Response�/H2�

�P�

If you make a claim, we promise to respond to you within 24 hours, either by
 settling immediately or putting you in contact with one of our insurance assessors.

�/P�

�H2�Low, Low, Rates�/H2�

�P�

We constantly monitor our prices against our competitors and guarantee that we
 provide the best-value insurance that you can’t actually buy.

�/P�

�/BODY�

�/HTML�

Figure 4.5 shows that the same styles have been applied as appear in Figure 4.4.

Reusing the same styles in another pageFIGURE 4.5

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 102

4.4 APPLYING STYLES WITH ‘CLASS’ AND ‘ID’ ATTRIBUTES 103

4

Applying styles with ‘class’ and ‘id’ attributes

So far we have looked at how to apply styles to specific HTML elements, such as H1, H2
and P. In many cases this is useful, but there are occasions when we want to:

● Apply the same style to more than one type of HTML element.
● Apply a style to some, but not all, instances of a particular HTML element.
● Apply a style to one specific instance of an element.

To do this we need some way of labelling parts of our HTML so that we can apply styles
to elements that are identified by these labels. We can do this in two ways:

● We can use the ‘class’ attribute. This enables us to group a number of elements as
belonging to a single class. Then we can apply a style to all members of the class.

● We can use the ‘id’ attribute. This can be used to give an element a unique id. This id
can be used to apply a style that is not used anywhere else in the document.

Using the ‘class’ attribute

The class attribute can be applied to many elements. In addition, a given element can
belong to more than one class. The class attribute is very useful as a way of applying styles
across a range of different elements. For example, let us assume that we want both major
headings (H1) and subheadings (H2) to be centred. We could, of course, apply the same
style separately to both H1 and H2 elements in the style sheet. However a more flexible
and maintainable approach is to use a class attribute. The first step is to identify both H1
and H2 elements as belonging to the same class. The name of a class is decided by the
author of the page. In the next example we apply the class name ‘heading’ to all instances
of both H1 and H2 elements.

�!DOCTYPE HTML PUBLIC “–//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�TITLE�Our Insurance Cover�/TITLE�

�/HEAD�

�BODY�

�!–– File: example4–5.htm ––�

�H1 class�“heading”�We provide the following types of insurance�/H1�

�H2 class�“heading”�Buildings Cover�/H2�

�P�You may think you’re “safe as houses” but you’d be surprised how many
things can damage the building you live in. Fires, earthquakes, subsidence, run-
away trucks, cricket balls through windows or the occasional meteor. Best to be
covered!

�/P�

�H2 class�“heading”�Contents Cover�/H2�

�P�You may not realise just how much the stuff you have would cost to replace.
If the burglars move in while you’re on holiday, could you afford to replace the
TV, the stereo, the chairs, the cupboards, the crockery, etc?

�/P�

4.4

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 103

104 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

�P�Not only that, our contents cover means that if you have your bike stolen,
drop the vase your mother-in-law gave you as a wedding present, lose your camera,
leave your glasses on the train or have your mobile phone stolen, you’ll be fully
 compensated.

�/P�

�/BODY�

�/HTML�

We also need to apply a style to ‘heading’ elements in the style sheet. To do this we
 simply precede the class name with a period and specify the style for that class. In this
example, we centre all members of the ‘heading’ class:

h1{color: blue}
h2{color: red; font-style: italic}
p{font-family: sans-serif}
.heading{text-align: center}

Now, any elements that belong to the ‘heading’ class will be centre-aligned, regardless of
which HTML elements the class is applied to.

Applying class styles to a subset of elements

In the previous example, we used the class attribute to apply a style to multiple different
elements. Another way of using the class attribute is to apply a style to a subset of elements
of a specific type. For example, we could apply a special style to some subheadings but not
others. In this example, we change the style sheet so that some paragraphs are emphasized
while others are not. We do this by putting a HTML element name in front of the class
name, like this:

elementname.classname {style}

To change ‘emphasis’ paragraphs, we add ‘p.emphasis’ to the style sheet:

h1{color: blue}
h2{color: red; font-style: italic}
p{font-family: sans-serif}
.heading{text-align: center}
p.emphasis{font-weight: bold}

Now, all paragraphs will be in sans-serif font, but only those marked as belonging to the
‘emphasis’ class will be displayed in bold font:

In the following example we make two of the paragraphs belong to the ‘emphasis’ class:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�TITLE�Our Insurance Cover�/TITLE�

�/HEAD�

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 104

4.4 APPLYING STYLES WITH ‘CLASS’ AND ‘ID’ ATTRIBUTES 105

4

�BODY�

�!–– File: example4–6.htm –—�

�H1 class�“heading”�We provide the following types of insurance�/H1�

�H2 class�“heading”�Buildings Cover�/H2�

�P�You may think you’re “safe as houses” but you’d be surprised how many
things can damage the building you live in. Fires, earthquakes, subsidence, runaway
trucks, cricket balls through windows or the occasional meteor.�/P�

�P class�“emphasis”�Best to be covered!�/P�

�/P�

�H2 class�“heading”�Contents Cover�/H2�

�P�You may not realise just how much the stuff you have would cost to replace.
If the burglars move in while you’re on holiday, could you afford to replace the
TV, the stereo, the chairs, the cupboards, the crockery, etc?

�/P�

�P class�“emphasis”�

Not only that, our contents cover means that if you have your bike stolen, drop
the vase your mother-in-law gave you as a wedding present, lose your camera, leave
your glasses on the train or have your mobile phone stolen, you’ll be fully
 compensated.

�/P�

�/BODY�

�/HTML�

Figure 4.6 shows the page displayed in Internet Explorer. Note the second and fourth
 paragraphs are in bold font.

Applying styles to paragraphs using ‘class’ attributesFIGURE 4.6

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 105

106 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

Element id attributes

Sometimes we may want to apply a style to one specific element, and no other. In
this case, the element needs a unique identifier that will make it different from
every other element in the document. Since the ‘class’ attribute can be applied to
 multiple elements, it cannot be used to uniquely identify a specific element. Instead,
we use the ‘id’ attribute to identify a unique instance of an element within the
 document, such as a particular paragraph or heading. Here, we apply a unique ‘id’ to a
single paragraph:

�P id�“footer”� ©WebHomeCover.com 2007 �/P�

Only this element on the page can have the id of ‘footer’. To style ‘id’ elements in a style
sheet we use the following syntax:

#idvalue{style}

Here, we apply some special styles to the ‘footer’ paragraph

#footer
{

font-weight: bold;
font-style: italic;
color: white;
background-color: black;
text-align: center

}

Figure 4.7 shows how the footer appears in the browser using our special footer
style, if it is added to the previous example HTML page (the full source file is in
 ‘example4-7.htm’).

Block and inline elements

So far we have been applying styles to some of the HTML elements that we introduced in
the previous chapter. One issue with many HTML elements is that they already have some
presentational implications, for example the relative size of headings or the way that
STRONG elements are rendered, even before style sheets are applied. Sometimes it is
useful to be able to apply styles to elements that specify only the very basics of structure,
with no presentational implications. In general terms, HTML elements can be either block-
level or inline. A block-level element implies a block of content that is separated in some
way from other blocks of content, usually by beginning on a new line, while inline content
is part of a block and not separated from it in any way. Blocks can appear inside other
blocks, and inline elements can appear inside other inline elements. Figure 4.8 shows the
general relationships between block and in-line elements.

Block level elements in HTML are indicated by the DIV (division) element, while inline
elements are indicated by the SPAN element. Their main value is in being able to provide
a generic structure for documents that will have style sheets applied for presentation. The ‘id’

4.5

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 106

4.5 BLOCK AND INLINE ELEMENTS 107

4

and ‘class’ attributes can be used with these elements to indicate where styles can be
applied to add presentational features.

The next example shows how the DIV and SPAN elements can be used to structure the
block and inline components of an HTML document. Within these elements, we can apply

Applying styles to an element using an ‘id’ attributeFIGURE 4.7

Block and inline elementsFIGURE 4.8

block

block

in-line

in-line

in-line

in-line

in-line

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 107

108 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

more specific HTML structures, such as paragraphs. In this example, paragraph elements
have been used within the blocks. It is important to note that a paragraph element should
not be a parent of a DIV element, but should be nested inside it. This makes sense, since
DIV and SPAN are the generic organisational elements, within which the more detailed
structures and presentation can be managed.

Because these tags are generic, we are unlikely to apply styles directly to them, since the
number of styles would be limited to two. Instead, we use attributes to specify ids or
 classes for DIV and SPAN elements so that we can apply styles to them later. In this
 example we apply ‘heading’, ‘bigger’ and ‘text’ class attributes to various elements, and ‘id’
attributes called ‘risk’ and ‘items’.

This example also shows how more than one class can be applied to
a single element, by using multiple class names separated by spaces,
e.g. class�“heading bigger”.

NOTE

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“divspanstyles.css” rel�“stylesheet” type�“text/css”�

�TITLE� Making a Claim�/TITLE�

�/HEAD�

�BODY�

�!–– File: example4–8.htm ––�

�DIV class�“heading bigger”�Buildings Insurance�/DIV�

�DIV class�“text”�

�P�

You need this type of insurance to cover you in case of
�SPAN id�“risk”�severe damage to your home�/SPAN�

(for example fire, flood, vehicle or tree crashing into it)
as well as more everyday risks like accidentally breaking a window
�/P�

�/DIV�

�DIV class�“heading bigger”�Contents Insurance�/DIV�

�DIV class�“text”�

�P�

You need this type of insurance to cover the
�SPAN id�“items”�things in your house�/SPAN�,
such as furniture, electrical goods, carpets and curtains, against risks such
as fire, theft, water damage (due to burst pipes, etc) or accidental breakage
�/P�

�/DIV�

�/BODY�

�/HTML�

On their own, the only effect of these elements is that DIV forces a new line. To overlay
presentational styles on top of a document written using these tags the ‘class’ and ‘id’

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 108

4.6 APPLYING STYLES TO LISTS AND TABLES 109

4

 attributes can be linked to a cascading style sheet. The following style sheet
 (‘divspanstyles.css’) applies styles to the classes and ids used in the example above. Note
that there are no styles applied here to HTML tags, only to the classes and ids that we
have defined ourselves.

.heading{text-align: center; color: blue}

.text{text-align: left; font-family: Arial}

.bigger{font-size: 2em}
#items{font-weight: bold}
#risk{font-weight: bold; font-style: italic; color: red}

Figure 4.9 shows the HTML page displayed in a browser, with all styles applied using only
DIV and SPAN elements.

Applying styles to lists and tables

There are some styles that can be applied to lists. For example, the symbol used can be
specified using the ‘list-style-type’ property. Unordered list bullets can be styled as ‘disc’,
‘circle’ or ‘square’. These can be used to override the browser’s default use of bullet
 symbols. The number format of an ordered list can also be specified using the ‘type’
 attribute to select a number (Arabic or Roman) or letter format (Table 4.1). Alternatively
we can set the value to ‘none’ to remove any symbols or numbers.

Figure 4.10 shows a modified version of the page from ‘example3-5.htm’, which includes
nested ordered and unordered lists, displayed in Internet Explorer 7. The only change to
the page is the inclusion of the necessary LINK element to apply the stylesheet (the mod-
ified HTML is in the file ‘example4-9.htm’. Two lines are added to the stylesheet to for-
mat lists, changing the unordered list bullets to the ‘square’ style and using lower case
Roman numerals for the ordered list:

ul{list-style-type: square}
ol{list-style-type: lower-roman}

4.6

Styles applied using DIV and SPANFIGURE 4.9

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 109

110 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

There are many ways that we can change the presentation of a table. These include:

● Adding spacing inside cells
● Adding padding between cells
● Setting the colours of the table
● Adding borders
● Aligning the table and its contents
● Setting the width of the table

Some of these will be applied to the whole table, some to parts of the table (e.g. a table row)
and others could be applied using class or id attributes. To keep the following example simple,
we will focus on styles that may be applied to HTML table elements. For example, the
 following style sets the ‘width’ property of the table to be 50% of the current window, while
the external ‘border’ property of the table will be set to 3 pixels wide, drawn solid black:

table{width: 50%; border: 3px black solid}

Styles that can be applied to ordered listsTABLE 4.1

list-style-type attribute Numbering style

decimal (1,2,3, . . .) – the default
upper-alpha (A,B,C . . .)
lower-alpha (a,b,c . . .)
upper-roman (I,II,III,IV . . .)
lower-roman (i,ii,iii,iv . . .)

As well as ‘solid’, other styles for borders include ‘dotted’, ‘dashed’, ‘double’
and ‘groove’. Styles can, of course, also be applied to rows or cells.NOTE

Formatting lists using stylesFIGURE 4.10

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 110

4.6 APPLYING STYLES TO LISTS AND TABLES 111

4

There is no specific table style for aligning the table on the page. However we can use the
generic ‘margin’ property, which sets all four margins round an element. If we set the value
of this property to ‘auto’, the table will automatically be centred.

table{width: 50%; border: 3px black solid; margin: auto}

As well as applying styles to the main TABLE element, we can apply them to any of the
other elements that appear inside tables. Here, we apply some styles to the table header
cells, setting the text color to white on a black background.

th{color: white; background-color: black}

Here, a solid border of 1 pixel is added around each cell:

td{border: 1px black solid}

Figure 4.11 shows the effect of these styles on the presentation of the table from
 ‘example3.8.htm’. The only change to the HTML page is the inclusion of the LINK element
that applies the style sheet (the modified HTML is in the file ‘example4-10.htm’).

If you do not like the separation of the cell borders, then you can collapse them together
using the ‘border-collapse’ property:

table{width: 50%; border: 3px black solid; border-collapse: collapse}

The effect is shown in Figure 4.12.

The styles we have applied to our table are just a brief introduction to what is possible. We
have glossed over much of the underlying HTML table model and the complex ways that
style sheets can be used with it. If you wish to explore this further, the ‘Tables’ chapter of
the CSS specification provides much more detail (Bos et al. 1998).

The effect of setting styles for elements within a tableFIGURE 4.11

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 111

112 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4
Style sheet cascades

At the beginning of this chapter we said that cascading style sheets provide for an
ordered list of style sheets to be ‘cascaded’ in the same document, each one adding
more specific styles. In this way, style information from several sources can be
 combined together. The following example uses two external style sheets and one
 internal style sheet:

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�LINK href�“informationpage.css” rel�“stylesheet” type�“text/css”�

�STYLE type�“text/css”�

p.important{color: red; font-size: large}
�/STYLE�

For the purposes of this example, ‘informationpage.css’ contains the following styles,
 left-aligning members of the ‘heading’ class and applying the ‘courier’ font to second-level
headings:

.heading{text-align: left}
h2{font-family: courier}

When we have a series of cascading styles applied to the same document, styles are
 aggregated together so that the final style is a combination of multiple style sheets. In case
of conflicts, where different styles are applied to the same types of element, styles defined
more locally will always override those defined more globally. For example, styles
defined using internal style sheets (with the ‘style’ element) will override any styles
defined in external style sheets. In addition, if more than one style sheet of the same type
(e.g. two external style sheets) are listed in a page, styles that appear later will override
those that appear earlier. In our example, any styles defined in ‘informationpage.css’
would override styles for the same elements defined in ‘webhomecover.css’. Specifically,

4.7

The effect of collapsing table bordersFIGURE 4.12

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 112

4.7 STYLE SHEET CASCADES 113

4

the ‘heading’ style in ‘informationpage.css’ would override the ‘center’ alignment of
 members of the ‘heading’ class defined in ‘webhomecover.css’. Other styles defined in
‘webhomecover.css’ would continue to be applied.

Any styles defined in a ‘style’ element in the header will override external styles,
though in our example the only style applied (to ‘important’ paragraphs) is a new style so
does not override anything in the external stylesheets. Any in-line styles will override all
the rest, as in our example where we apply the ‘normal’ font style to both second-level
headings:

style � “font-style: normal”

This overrides the italic style applied by ‘webhomecover.css’. Here is the complete
HTML page:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�LINK href�“informationpage.css” rel�“stylesheet” type�“text/css”�

�STYLE type�“text/css”�

p.important {color: red; font-size: 1.2em}
�/STYLE�

�TITLE�Information About Our Insurance Cover�/TITLE�

�/HEAD�

�BODY�

�!—– File: example4.11.htm –—�

�H1 class�“heading”�Important Information�/H1�

�H2 class�“heading” style�“font-style: normal”�Buildings Cover�/H2�

�P�Buildings cover is subject to an inspection by a structural engineer prior
to insurance being approved should WebHomeCover require this inspection.

�/P�

�H2 class�“heading” style�“font-style: normal”�Contents Cover�/H2�

�P�You will be required to provide documentary and/or photographic evidence
of items to be covered on your policy where an individual item may be classified
as a valuable antique.

�/P�

�P class�“important”�

Failure to meet these terms and conditions may invalidate your insurance cover.
�/P�

�HR�

�P id�“footer”� ©WebHomeCover.com 2007 �/P�

�/BODY�

�/HTML�

Figure 4.13 shows the effect of the cascading style sheets on the page in Internet Explorer.
Note the change in style of all the headings from the second external style sheet, the large
font of the ‘important’ paragraph style from the internal style sheet, and the non-italic
 second-level headings, specified by in-line styles. Other styles, such as those applied to the
footer, are unaffected.

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 113

114 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

Using CSS for page layout

So far we have been looking at ways of changing the appearance of parts of a document
using CSS. However we can also use it to manage the layout of a document. This is quite
a complex topic, and not one we can do justice to here, but this section serves as an
 introduction to the general concept of page layout with CSS.

We previously introduced some design patterns related to generic page layout, such as
the navigation bar, a site logo in the top left corner and the three-region layout. In
the final example in this chapter, we see how CSS can be used to implement a three-
region layout.

In a previous exercise, you were asked to implement a three-region layout using a table,
but many authors claim that it is better to use style sheets for this type of layout. There
are many ways to approach this problem, but here we will introduce a very simple solution
using the ‘float’ and ‘clear’ style properties. We can set the value of the ‘float’ property to
‘left’ or ‘right’ to make the associated element appear on the right or left of the page, with
other elements wrapped around it. This can be useful for setting up the left hand
 navigation bar of the three-region layout. To set up other elements that do not wrap around
floating elements we can use the ‘clear’ property. The values of this property can be ‘left’
(do not wrap around floating elements on the left), ‘right’ (do not wrap around floating
 elements on the right) or ‘both’ (do not wrap around any floating elements). Figure 4.14
shows the general layout of a page with a three-region layout and a page footer. Note that
the side navigation bar uses the ‘float’ property to float to the left hand side of the page
and allow the main content to wrap to the right. To maintain the column layout where the
content area may be longer than the side navigation bar we set the width of the navigation
bar and also the left margin of the content to the same value. This stops the content from

4.8

The effect of cascading multiple style sheetsFIGURE 4.13

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 114

4.8 USING CSS FOR PAGE LAYOUT 115

4

wrapping underneath the navigation bar. We don’t use ‘clear’ because we want the content
to appear next to the side navigation bar, not above or below it. However, to keep the top
navigation bar above the side navigation bar and the page footer below it, we use the ‘clear’
property on both. Figure 4.15 shows how the various styles apply to the three region
 layout.

Using CSS with anchors

In our three-region layout we are going to have links along both the top and side navigation
bars. To style anchors with CSS we have to use a slightly different approach from styling
simple text, because an anchor can be in one of four possible states, and each one can have
a different style applied to it. The four states are:

● link: a link that has not been clicked on and the mouse pointer is not hovering over it
● visited: a link that has previously been visited and the mouse pointer is not hovering

over it
● hover: a link with the mouse pointer hovering over it
● active: a link that is being clicked on by the mouse

To apply styles to these states we use a CSS pseudo-class, which appears after the element
name, separated from it by a colon. For example, to set the color of an anchor that has not
been clicked on using the ‘link’ pseudo-class, we would use the following style:

a:link{color: black}

When applying styles to these pseudo classes they must appear in the correct order in the
style sheet (the order used in the list above). Here are some styles we might apply to these
four anchor states:

a:link{color: black}
a:visited{color: blue}
a:hover{font-weight: bold}
a:active{font-style: italic}

The three-region layout (with a page footer) defined by CSS stylesFIGURE 4.14

#navigationbar {clear: left}

 #sidenavigation {float: left; width: 10em}

 #content {margin-left: 10em}

 #pagefooter {clear: left}

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 115

116 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

Applying the layout styles

Here are the styles that would be added to the style sheet to enable the three-region
 layout. So that the layout can be applied separately from other style information, we will
save it in a separate file (‘threeregion.css’). In addition to the layout styles, we also apply
some styles to the hyperlink anchors that appear in the two navigation bars. Notice too the
reference to ‘margin-left’. In the table example, we introduced the ‘margin’ property,
which applied the same value to all four margins of an element; left, right, top and bottom.
To control the margins individually, there are ‘margin-left’, ‘margin-right’, ‘margin-top’ and
‘margin-bottom’ properties. Here, we use the ‘margin-left’ property.

a:link{color: white}
a:visited{color: red}
a:hover{font-weight: bold}
a:active{font-style: italic}
#navigationbar {color: white; background-color: rgb(0,0,150)}
#sidenavigation {float: left; height: 400px; color: white; background-color:
rgb(0,0,150)}
#content {margin-left: 10em}
#pagefooter {clear: left}
.topnavigationlink {clear: left; margin-left: 1em; font-size: 1.1em}
.sidenavigationlink {font-size: 1em}

Here is a simple page that uses the three-region style. The content here is just mocked up,
with some fictional names of hyperlinked pages.

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�LINK href�“webhomecover.css” rel�“stylesheet” type�“text/css”�

�LINK href�“threeregion.css” rel�“stylesheet” type�“text/css”�

�TITLE�WebHomeCover.com�/TITLE�

�/HEAD�

�BODY�

�!–– File: example4.12.htm ––�

�DIV id�“navigationbar”�

�A href�“home.htm”�

�IMG src�“webhomecoverlogo.gif” alt�“WebHomeCover logo”�

�/A�

�SPAN class�“topnavigationlink”�

�A href�“quote.htm”�Get a quote�/A�

�/SPAN�

�SPAN class�“topnavigationlink”�

�A href�“claim.htm”�Make a claim�/A�

�/SPAN�

�SPAN class�“topnavigationlink”�

�A href�“policies.htm”�See my policies�/A�

�/SPAN�

�/DIV�

�DIV id�“sidenavigation”�

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 116

4.8 USING CSS FOR PAGE LAYOUT 117

4

�DIV class�“sidenavigationlink”�

�A href�“build.htm”�buildings cover�/A�

�/DIV�

�DIV class�“sidenavigationlink”�

�A href�“content.htm”�contents cover�/A�

�/DIV�

�DIV class�“sidenavigationlink”�

�A href�“deal.htm”�special deals�/A�

�/DIV�

�DIV class�“sidenavigationlink”�

�A href�“more.htm”�more info�/A��/DIV�

�/DIV�

�DIV id�“content”�

�H1 class�“heading”�We provide the following types of insurance�/H1�

�H2 class�“heading”�Buildings Cover�/H2�

�P�You may think you’re “safe as houses” but you’d be surprised how many
things can damage the building you live in. Fires, earthquakes, subsidence, runaway
trucks, cricket balls through windows or the occasional meteor. Best to be covered!

�/P�

�H2 class � “heading”�Contents Cover�/H2�

�P�You may not realise just how much the stuff you have would cost to
replace. If the burglars move in while you’re on holiday, could you afford to
replace the TV, the stereo, the chairs, the cupboards, the crockery, etc?

�/P�

�P�Not only that, our contents cover means that if you have your
bike stolen, drop the vase your mother-in-law gave you as a wedding present, lose
your camera, leave your glasses on the train or have your mobile phone stolen,
you’ll be fully compensated.

�/P�

�/DIV�

�DIV id�“pagefooter”�

�HR�

�P id�“footer”� ©WebHomeCover.com 2007 �/P�

�/DIV�

�/BODY�

�/HTML�

Figure 4.15 shows how the page looks in the Opera 9 browser.

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 117

118 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

The three-region layout using style sheets, as displayed in the
Opera 9 browser

FIGURE 4.15

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 118

SUMMARY 119

4

Exercises

4.1 Create a simple web page with some text. Using a style sheet and the RGB colour
syntax, colour the text blue.

● What do you get if you mix red and green without blue?
● What do you get if you mix green and blue without red?

4.2 Add some images of houses (provided on the CD) to the bottom of the left-hand
region of the three-region layout example for the home insurance system.

4.3 Create a CSS file called ‘basic.css’ that will provide the presentation for the pages of
the research questionnaire web site. At this stage, we are only looking at static pages
that might be used to introduce and explain the site, not the questionnaires them-
selves. In the first version, provide formats only for HTML elements.

4.4 Look at your ‘About Us’ page to identify parts of the content that might be usefully
categorized using the ‘class’ attribute. Having identified one or more classes of con-
tent, modify your CSS to apply styles as appropriate.

4.5 Create a CSS file called ‘infopage.css’. Add at least one style that is not in ‘basic.css’
that can be applied to your ‘About Us’ page.

4.6 Use CSS to manage the layout of your pages, applying the three-region layout.

4.7 Experiment with using CSS to manage the layout of your home page.

In this chapter we saw how CSS can be used to provide the presentation for HTML files.
We began by applying in-line styles, added to elements using the ‘style’ attribute. We
then saw how to include style sheets in the document header using a STYLE element,
so that styles could be reused for elements of the same type. The next stage covered
how to write and link external style sheets that could be used across multiple web pages.
We concluded the chapter by using CSS to manage the layout of a page. There are many
aspects to CSS, far too many to cover in this chapter. Table 4.2 summarizes the CSS
 properties and some of their possible values that we have introduced in this chapter. This
is of course just a small subset of the full CSS syntax, but there are many books and
 on-line resources available, if you want to explore stylesheets further.

SUMMARY

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 119

120 CHAPTER 4 STYLING IN THE PRESENTATION LAYER: CSS

4

Property Meaning Possible values Examples

color Foreground (text) Any of the 16 color names color: blue
color defined in HTML 4.0: aqua,

black, blue, fuchsia, gray, color:
green, lime, maroon, navy, rgb (255, 255, 255)
olive, purple, red, silver, teal,
white, yellow. RGB color color: rgb (0, 0, 0)
values: color: rgb (R,G,B)

background-color Background color Same values as color background-color: black

text-align Text alignment left, right, center, justify text-align: center

font-style Font style normal, italic, oblique font-style: italic

font-weight Font weight normal, lighter, bold, bolder font-weight: bold

font-size Font size A measurement in pixels, font-size: 110%
em, a percentage or name: font-size: .8em
large, small, x-small, x-large font-size: 20px

font-size: x-large

font-family Font family serif, sans-serif, cursive, font-family: sans-serif
fantasy, monospace, Arial, font-family: ‘Times
Courier, ‘Times New Roman’ New Roman’

list-style-type Styles for list decimal, upper-alpha, list-style-type: square
numbers or bullets lower-alpha. upper-roman. list-style-type:

lower-roman lower-roman

width Width of element Percentage of page width width: 50%
(e.g. table width)

border Table border Number of pixels and line border: 3px solid
style: solid, dotted, dashed,
double, groove

margin All element margins auto margin: auto

margin-left Left element margin A measurement in em margin-left: 1em

margin-right Right element margin A measurement in em margin-right: 3em

margin-top Top element margin A measurement in em margin-top: 5em

margin-bottom Bottom element A measurement in em margin-bottom: 2em
margin

border-collapse Table border style collapse border-collapse: collapse

link Pseudo-classes for a: link a: link{color: black}
visited anchor elements a: visited
hover a: hover
active a: active

float Relative alignment left, right float: left;
within the page

clear Stop content left, right, both clear: both
wrapping around
elements on the
right or left

CSS properties introduced in this chapterTABLE 4.2

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 120

REFERENCES AND FURTHER READING 121

4

References and further reading

Bos, B., Lie, H., Lilley, C. and Jacobs, I. (1998) Cascading Style Sheets, level 2 CSS2 Specification,
W3C Recommendation 12-May-1998, Chapter 17, http://www.w3.org/TR/REC-
CSS2/tables.html

Lie, H. and Bos, B. (1999) Cascading Style Sheets, designing for the Web, 2nd edition. Chapter 20,
‘The CSS saga’. Addison Wesley.

Raggett, D., Le Hors, A. and Jacobs, I. (1999) HTML 4.01 Specification, Section 14, ‘Style
Sheets’. http://www.w3.org/TR/html4/present/styles.html

Weinman, L. (2007) The Browser-Safe Web Palette. http://www.lynda.com/hex.asp

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 121

Stobart-04.qxp:Stobart-04 11/7/07 5:49 PM Page 122

123

CHAPTER 5

Content, Structure and Validation:
XML, DTD and XHTML

LEARNING OBJECTIVES

● To understand the concepts of semi-structured data

● To be able to construct well-formed XML documents

● To be able to create document type definitions

● To be able to validate XML documents against document type definitions

● To be able to create well-formed and valid XHTML documents

In this chapter, we begin by looking at some of the limitations of HTML, then explore how XML
and XHTML can be used to provide a more flexible approach to both representing data and
 building web pages. Along the way, we see how some of these markup languages can be
 validated by document type definitions (DTDs). We also see what tools may be used to test the
well-formedness and validity of XML and XHTML documents, using these DTDs.

The limitations of HTML

HTML has been very successful in providing a relatively simple way of presenting data on
the web. It enables the rapid creation of web pages that can contain a number of different
content types (text, images, videos, sounds, etc), and these pages can be presented to the
user by commonly available browsers such as Internet Explorer and Mozilla Firefox.
However, as web applications have become more sophisticated and addressed more
 complex needs, the limitations of using HTML as the main way of managing the content
of a web application have become apparent. One of the main problems is that ‘traditional’

5.1

INTRODUCTION

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 123

124 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

HTML combines content, structure and presentation, which works against the idea of
 separation of concerns. As an example, take this very short piece of HTML source that uses
the FONT element (this was not covered in our HTML chapter because we did not look
at presentational elements):

�FONT color�“red”��P�Hello. . .�/P��/FONT�

In this markup, we can see some content (‘Hello . . . ’), a structural element (the paragraph
tags) and a presentation element (the FONT element, used here to set the font colour to
red). If we were to build the pages of our web application using this type of mark-up, then
it would be very difficult to separate out the different concerns of content, structure and
presentation both for original development and for making changes to pages. Therefore
using just HTML makes our web applications difficult both to build and to maintain. Of
course, one part of the solution is to use cascading style sheets (CSS) for presentational
mark-up, as we saw in the previous chapter. However, the mix of presentation with
 content and structure is not the only issue. Another serious problem with HTML is that it
does not have to be well-formed. Take the following example, which most browsers would
be able to deal with, as they are usually tolerant of poorly formed HTML:

�DIV CLASS�intro��p��STRONG��EM�Hello. . .�/STRONG��/EM��/DIV�

Here, there are four aspects where the mark-up is not well formed. First, there is an
 attribute value (‘intro’) that is not surrounded by either speech marks or apostrophes.
Secondly, there is an element that has a start tag but no end tag (�p�). Then, there is
improper nesting: the terminating �/STRONG� tag appears before the terminating
�/EM� tag, but should appear after it. Finally, there are inconsistent and incorrect uses of
case (the tags are all in upper case except the �p� tag and the attribute name, ‘CLASS’,
is in upper case).

The effects of poorly formed documents

Why does this lacked of well-formedness matter? There are several reasons why this can
be a problem. Perhaps the most important is that a document that is not well-formed
 cannot be validated. This is significant because validation, which checks a document to
ensure that the correct elements and attributes appear in the right order and number, is
the first step in successfully processing the content of a document. Since the exact
 structure of documents created using a mark-up language cannot be known in advance, a
program that processes documents like this needs to know that they will meet certain
 structural rules. One example of a software application that needs to process mark-up is a
web browser. On the whole, browsers have had to be very tolerant of poorly formed HTML
and do their best to render an HTML page however badly formed it is. However there are
limits to how flexible a browser can be. Browser processing can arbitrarily fail if an HTML
document is particularly poorly formed, in some cases resulting in the user seeing a blank
page. This can happen because a browser often ignores those parts that cannot be properly
processed, and sometimes most or all of the page is ignored. In this sense, browsers are a vic-
tim of their own success, having been historically able to manage poorly formed documents,
there is perhaps an expectation that poorly formed documents are acceptable.

In a ‘smart client’ application that supports some client-side processing over and above
the normal page rendering of the browser, such as one that uses the document object
model (DOM), there can be problems with the program scripts that are running within

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 124

5

5.2 SEMI-STRUCTURED DATA 125

the browser. The DOM is a standard interface to the content, structure and style of a
 document, enabling applications to access and update that document. The programming
 language that is often used to interact with the DOM in a web browser is JavaScript (for
example, in Ajax applications) and JavaScript errors are common in web applications. The
problem is that the DOM represents the structure of the HTML document within the
browser and JavaScript programs often need to navigate through the DOM to process
 various parts of the page. If the DOM is not well constructed due to poorly formed HTML,
the JavaScript may be unable to find what it is looking for.

Why HTML alone is not enough

The problem of poorly formed documents can be resolved by validating an HTML page
against a DTD. However there is a further important issue with HTML, which is that
HTML cannot be used to represent anything other than web page mark-up. This means that
the content that we represent in web pages has no structure applied to it other than the
 specific structure of an individual web page. However the data that underlies a web appli-
cation may need to be used in different pages, and in different ways, across many parts of
the application, or even between different applications. Ideally we would like to be able to
have a separate method of representing the underlying structure of our content regardless
of the ways that it might be organized and presented in web pages.

In summary, HTML has many strengths as a simple, flexible language for creating web
pages that combine content, structure and presentation. However, it does not have enough
intrinsic structural and syntactic rules to enable applications other than browsers (which
are only concerned with presentation) to process them effectively. Further, the syntax of
HTML is fixed to a set of tags that are intended only for the rendering of web pages. It
cannot be used to represent more general types of content. If we want to use mark-up to
present content in a more rigorous and useful way, then we need some language other than
HTML. That language is the eXtensible Markup Language (XML).

Semi-structured data

In this section, we look at the relationship between the eXtensible Markup Language
(XML) and the concept of semi-structured data. We see how semi-structured data can be
represented in an XML document using both elements and attributes, and explain how to
choose between elements or attributes when structuring XML documents.

Semi-structured data contains no type information, is self-describing and can have varia-
tions in its structure. Semi-structured data is self-describing because it contains labels; each
piece of data contains some metadata that tells us about that data element. This means that
a document of semi-structured data can support interoperability between systems, because
when it is serialized (sent as a stream of data) between different applications it carries its
own labels with it, helping the receiving system to process its content. This is the basis
upon which XML web services work.

Perhaps the best way to explain semi-structured data is to start with an example of some
structured data:

02 03 1959 15 08 1977 08 04 1994

5.2

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 125

126 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

If you look at this data you can see that it follows a repeating and consistent structure.
There are three groups of numbers, and in each group there are two numbers of two
 digits followed by a third number of four digits. The different numbers are separated by
spaces. The important feature of structured data is that it follows a consistent and
 predictable format. In this case, you can probably see that the data represents a series of
dates, though there is nothing in the data to tell you that, other than the knowledge you
already have about dates (that they have a day number, a month number and, particularly
since the ‘millennium bug’ panic, a four-digit year.) If you look a bit more closely you might
assume that the day number comes before the month number in each group, because ‘15’
could not be a month number. However with just the structured data to go on this is
just supposition. The data may not represent dates at all. Maybe it is a single part number
from a catalogue, or some sports results. Without a bit of metadata to help us we do not
really know.

Assuming that the data is, in fact, a series of dates, any application that processes this data
needs to know that each data item is separated from its neighbours by spaces and that it
occurs in groups of three, each group representing the day, month and year of the date in
that order. That information is not carried with the data itself, so we have to ‘just know’
it. In contrast, semi-structured data is human-readable and self-describing. This example
shows the same data in semi-structured format (this is not a ‘real’ syntax, just one used as
an example.)

[dates
[date [day: 03] [month: 02] [year: 1959]]
[date [day: 15] [month: 08] [year: 1977]]
[date [day: 08] [month: 04] [year: 1994]]

]

In this version, the data is both human-readable and self-describing because the data
describes itself using recognisable names. Thanks to the labels, we can clearly see that
the data represents a series of dates, and that each date consists of the day, the month
and the year.

Variations in structure

One of the key features of semi-structured data is that it allows for variations in the
 structure of the data so that the order and number of elements can be varied. In this
 version of the data, we add a ‘day-name’ element to the first date but not to the other dates.

[dates
[date [day-name: Tuesday] [day: 03] [month: 02] [year: 1959]]
[date [day: 15] [month: 08] [year: 1977]]
[date [day: 08] [month: 04] [year: 1994]]

]

This type of structure would be very difficult, if not impossible, to process without the
metadata provided by the labels. An application would have to check for the type of data
at the beginning of every date to see if it was text (the day name) or a number (the day).
Imagine, however, if we made the structure more complex, with many optional parts to
the data. Eventually, it would be impossible to process this information without the
 identifying labels. The point about semi-structured data is that the self-descriptiveness

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 126

5

makes it possible for the data to vary in structure, because it provides the context for
 applications to identify the nature of a piece of data by the label that is attached to it. As
a side effect, making these labels human-readable can be very useful as well.

Semi-structured data as a tree

Semi-structured data is generally grouped into related types using a nested structure and
can be visualized as a tree. We can think of a tree as being composed of nodes and edges,
with edges providing the links between the nodes (Figure 5.1). When we look later at the
elements in an XML document we can think of them as being like the nodes in this kind
of tree structure. What this means is that an XML document is fundamentally a tree that
can therefore be traversed in a specific order (known as the document order). Because of
the flexible nature of semi-structured data, the trees that represent different documents
can vary widely.

What is XML?

XML is not so much a language as a metalanguage. The term ‘meta’ means ‘about’, so a
metalanguage can provide information about a specific language. In the case of XML, it is
a metalanguage used to describe other specific mark-up languages, specifying the syntax of
the language being defined. XML is designed to be semi-structured, enabling exact, yet
flexible, rules to be applied about how data can be organized. Importantly, it is also
designed to be extensible in the sense that many different XML-based languages can be
built from it, which is what makes it a metalanguage. XML has no predefined tags so you
can define your own terms and markup. In contrast, HTML is not a metalanguage because
it consists of a set of predefined tags that can be used in a document. You cannot invent
new tags for HTML because they are already specified as part of its syntax.

XML is an official recommendation of the W3C that aims to accomplish what HTML
 cannot and to be simpler to use and implement than SGML. Unlike HTML, it has no
 presentational components, though CSS can be used to present XML in a similar way to
HTML. Many other specifications are based upon XML, including XHTML, which we
introduce in Section 5.6. In addition, there are many other special- purpose XML-based
specifications that are beyond the scope of this book.

5.3

5.3 WHAT IS XML? 127

A tree of nodes and edgesFIGURE 5.1

node

node

node

node

node

node

node

edge edge

edgeedge edge

edge

tree

Document order

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 127

128 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

The design goals for XML (Bray et al. 2006) were that it should:

● Be simple to use over the Internet.
● Support a wide variety of applications.
● Be compatible with SGML.
● Make it easy to write programs that process XML documents.
● Have the minimum possible number of optional features (ideally zero).
● Be human-legible and reasonably clear.
● Have its design prepared quickly.
● Have a formal and concise design.
● Make documents easy to create.
● Not consider terseness important.

Among other many other uses, XML can be used as an alternative to HTML in creating
web pages, but with a separation of content and presentation. Rather than combining, as
HTML does, content, structure and presentation into a single language, XML is purely a
data description (mark-up) language that manages content. It provides a definition of data
structures and syntax, but not semantics (it does not specify what the data actually means).
It performs a number of roles that go beyond the capabilities of HTML, for example
the exchange of data between different applications (e.g. web services). Using XML as a
 communication mechanism between different systems avoids having to use many different
file formats. Various industries have standardized on special XML-based languages,
enabling them to exchange data using a common format. Examples of this type of format
include the B2B (business to business) XML document specifications defined by the
RosettaNet organisation, principally for the electronic component industry and HL7
(Health Level 7) for clinical and administrative data in health care. XML can be (and has
been) used to represent a huge range of different types of information. The following
example is a fragment of a much larger document from the universal protein knowledge-
base (UniProt 2005), that describes the DNA of tuberculosis. Here, XML is being used to
represent non-textual data.

�?xml version�“1.0” encoding�“UTF-8”?�

�organism key�“2”�

�name type�“scientific”�Mycobacterium tuberculosis�/name�

�dbReference type�“NCBI Taxonomy” id�“1773” key�“3”/�

�/organism�

�sequence length�“325” mass�“34581” checksum�“B993B5442FD5557D”
modified�“1993–07–01” version�“1”�

MTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLAGGAATAGAFSRPGLPVEY
LQVPSPSMGRDIKVQFQSGGNNSPAVYLLDGLRAQDDYNGWDINTPAFEW
YYQSGLSIVMPVGGQSSFYSDWYSPACGKAGCQTYKWETFLTSELPQWLS
ANRAVKPTGSAAIGLSMAGSSAMILAAYHPQQFIYAGSLSALLDPSQGMG
PSLIGLAMGDAGGYKAADMWGPSSDPAWERNDPTQQIPKLVANNTRLWVY
CGNGTPNELGGANIPAEFLENFVRSSNLKFQDAYNAAGGHNAVFNFPPNG
THSWEYWGAQLNAMKGDLQSSLGAG

�/sequence�

�/entry�

�copyright�

Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 128

5

Distributed under the Creative Commons Attribution-NoDerivs License
�/copyright�

�/uniprot�

The next example also uses XML, but is very different. This is again a tiny fragment of a
much larger XML document, but this time it contains TV listings, in XMLTV format (Eden
2005), from the UK Radio Times (BBC 2005). Here, the content is primarily text-based.

�?xml version�“1.0” encoding�“ISO-8859-1”?�

�!DOCTYPE tv SYSTEM “xmltv.dtd”�

�tv source-info-name�“Radio Times”
generator-info-name�“XMLTV”
generator-info-url�“http://membled.com/work/apps/xmltv/”�

�channel id�“channel4.com”�

�display-name�Channel 4�/display-name�

�display-name�4�/display-name�

�/channel�

�programme start�“20050102010500 UTC” stop�“20050102024000 UTC”
channel�“channel4.com”�

�title�The Rachel Papers�/title�

�desc lang�“en”�A 19-year-old studying to go to Oxford enters all the infor-
mation about his love life into his computer in a determined effort to find the
perfect seduction technique. But his system collapses when he meets and falls in
love with the beautiful Rachel, an American living in London. The couple spend a
passionate weekend together, but then the dream begins to fall apart.�/desc�

�credits�

�director�Damian Harris�/director�

�actor�Dexter Fletcher�/actor�

�actor�Ione Skye�/actor�

�actor�Jonathan Pryce�/actor�

�actor�James Spader�/actor�

�actor�Bill Paterson�/actor�

�actor�Shirley Anne Field�/actor�

�/credits�

�date�1989�/date�

�category lang�“en”�film�/category�

�category lang�“en”�Film�/category�

�video�

�aspect�15:9�/aspect�

�/video�

�subtitles type�“teletext” /�

�/programme�

�/tv�

Components of XML

Like an HTML document, an XML document consists of a series of tags surrounded by
angle brackets and start tags may include attributes. There are, however, one or two
 additional aspects to XML, including what is known as the prolog. There are a number of

5.4

5.4 COMPONENTS OF XML 129

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 129

130 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

possible parts to the prolog, but here we introduce two of them, the XML declaration and
the processing instructions.

The XML declaration

An XML document should begin with the XML declaration. This identifies it as an XML
document and also declares its version number. Note the question marks that come inside
the angle brackets.

�?xml version�“1.0”?�

The ‘xml’ should be in lower case, though XML processors recognize
all the different possible case combinations of these three letters, so
using upper case would not actually result in an error.

NOTE

The XML version 1.1 specification states that any XML document that
does not explicitly have an XML declaration with a version value of 1.1
will be assumed to be using version 1.0.

NOTE

The most commonly used version of XML is version 1.0. There is a version 1.1 specification
(Bray et al. 2004) but this is largely to enable wider character sets in names than are
 specified by XML version 1.0, to be able to adapt to the continued development of the
Unicode character set.

The character encoding used in the document may also be specified, though it will default
to utf-8 (Unicode Transformation Format 8). This is an encoding scheme that is backward-
compatible with ASCII (American Standard Code for Information Interchange, an older
standard, 8-bit character encoding) and uses from 1 to 4 bytes to represent each character.
You can choose to explicitly specify utf-8 as the encoding, like this:

�?xml version�“1.0” encoding�“utf-8”?�

Other common encodings that you may see used include ISO-8859-1, which is for the
Latin character set on the Internet, and utf-15, which uses at least two bytes per character
(i.e. is at least 15 bits). Either of these, or indeed any of a number of other character
encodings, can appear in the ‘encoding’ attribute for example:

�?xml version�“1.0” encoding�“ISO-8859–1”?�

or

�?xml version�“1.0” encoding�“utf-15”?�

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 130

5

The implication of these differences in encoding is that you should make sure that what-
ever editor you may be using to create and edit XML documents is saving those documents
in the same encoding that you have specified. If not, software tools, including browsers,
will not be able to process the XML properly.

Processing instructions

The XML declaration can be followed by processing instructions that are intended to
 provide information to applications that need to process the document, such as software
that transforms the XML into another type of document. Browsers and other tools can
understand this type of processing instruction and handle the XML document accordingly.
A processing instruction is identified by special tags that include question marks, similar to
the XML declaration.

�? processing instruction ?�

An example of a processing instruction is one that applies a CSS stylesheet to an XML
 document. Such an instruction looks something like this:

�?xml version�“1.0”?�

�?xml-stylesheet href�“styles.css” type�“text/css”?�

Elements and parsed character data

Regardless of the content of the prolog, at a minimum, an XML document must contain a
root element, which may be the only element in the document, for example:

�weather-forecast�rain�/weather-forecast�

In XML version 1.0, everything except the declaration of the root element can be omitted.
Nevertheless we will be including the XML declaration at the top of all our XML files from
now on (the XML version 1.0 specification states that XML documents ‘should’ begin with
this declaration, even though it is not compulsory).

The content in the body of an XML element (‘rain’, in our example) is parsed character
data. This means that it is data that will be parsed (processed) by any program that
 handles the XML document. Parsed character data has no type defined by XML, it is just
characters.

An XML document will generally consist of the root element, parsed character data and
sub-elements (elements nested inside other elements). For example, we might extend our
‘weather-forecast’ example to include nested elements to describe the weather forecast for
today and tomorrow:

�?xml version�“1.0”?�

�!–– File: Example5–1.xml ––�

�weather-forecast�

�today�

rain
�/today�

�tomorrow�

5.4 COMPONENTS OF XML 131

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 131

132 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

showers
�/tomorrow�

�long-range�

unsettled
�/long-range�

�/weather-forecast�

You will see from these XML examples that the comment syntax is the
same as HTML: �! –– a comment –– �

NOTE

Although our example so far only nests elements to a depth of one, elements can be
 nested to any depth. XML itself allows any combination of elements to be used, but we
should group related elements together to give them some meaningful structure. For
 example, we might provide some temperature information that relates to either today or
tomorrow, and group this information into nested elements, as in the next example. Note
how this XML document has now acquired a more flexible structure (i.e. it is evidently
semi-structured). The ‘today’ and ‘tomorrow’ elements now have different structures from
the ‘long-range’ element.

�?xml version�“1.0”?�

�!–– File: Example5–2.xml ––�

�weather-forecast�

�today�

�general�Rain�/general�

�temperature�

�maximum�15�/maximum�

�minimum�11�/minimum�

�/temperature�

�/today�

�tomorrow�

�general�Showers�/general�

�temperature�

�maximum�20�/maximum�

�minimum�15�/minimum�

�/temperature�

�/tomorrow�

�long-range�Unsettled�/long-range�

�/weather-forecast�

It is perhaps worth emphasising at this point that an XML document says nothing
about the presentation of data, it is primarily about the representation of data. The
weather forecast document is only about the underlying structure of its data content,
not about how it might, for example, be presented on a web page. It is also not com-
prized of predefined elements, as an HTML document would be. The elements
‘weather-forecast’, ‘today’, ‘temperature’ etc. have been created specifically as mark-up
for this document.

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 132

5

Viewing XML pages

So far we have seen a couple of XML documents, but what can we do with them? Later
we will be using the XML-based language XHTML to create web pages, but in the
 meantime we can view XML documents directly in a browser. Providing you are using a
browser that can understand XML, an XML document can be opened directly as a local
file, just like an HTML document. Figure 5.2 shows how our weather forecast XML
 document appears in the Mozilla Firefox 2 browser. The behaviour of this browser (though
not all) is to show an XML document as a tree structure, and enable elements to be
expanded or collapsed. As you can see from this figure, the first ‘temperature’ element
has been collapsed, and is preceded by a ‘�’ symbol to indicate this, but the second
 ‘temperature’ element is expanded (all expanded elements are preceded by a ‘-’ symbol).
Clicking on these symbols will expand or contract the element they are associated with.

Well-formed XML

Unlike an HTML document, which may be well-formed but does not have to be, an XML
document must be well-formed. The rules for well-formed XML are similar to those for
well-formed HTML, but you will note that there are one or two important differences:

● Empty tags must be expressed properly, with the trailing forward slash before the
closing angle bracket, i.e.

�tag/�

This is different from HTML where empty tags such as �BR� do not require a
 trailing slash.

● Unlike HTML, text in XML is case-sensitive. Also, unlike in the HTML 4.0
 specification, you should always use lower case for XML element names, as well as
for attribute names.

5.4 COMPONENTS OF XML 133

An XML document displayed in the Mozilla Firefox 2 browserFIGURE 5.2

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 133

134 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

● Element and attribute names must start with a letter but may also include numbers,
underscores, hyphens, periods or colons. In HTML, of course, these names are
 predefined by the HTML syntax.

One useful feature of being able to load an XML document into a browser is that the
browser will check if it is well-formed. The following XML document is not well-formed
because the ‘average-winter-temperature’ element is missing its closing tag:

�?xml version�“1.0”?�

�!–– File: Example5–3.xml ––�

�climate�

�average-winter-temperature�

10
�average-summer-temperature�

20
�/average-summer-temperature�

�/climate�

Attempting to open this document as a local file into Mozilla Firefox 2 results in
the error message shown in Figure 5.3. The browser complains that the closing tag is
missing.

Attributes versus elements in XML

As in HTML, XML opening tags may contain attributes to define properties that are
 related directly to this element rather than being defined by other elements. When you use

The error message in Mozilla Firefox 2 when attempting to load a
poorly formed XML document

FIGURE 5.3

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 134

5

attributes in HTML, you are constrained by HTML syntax. In contrast, if you are creating
an XML document structure then you will have to decide what data should be represented
by elements and what should be represented by attributes. Being more tightly coupled to
their host element than nested tags, attributes are less flexible but have some special
 properties. How do you decide, then, whether a particular piece of data should be
 modelled as an element or an attribute? The general rule of thumb is that you should use
elements unless you have a particular need to use attributes. This is because there are many
advantages to using elements:

● You cannot have multiple attributes of the same name in a single element, but you
can have multiple nested elements that have the same name.

● Attributes are less flexible if you want to change the structure of a document later.
● Attributes cannot be used to describe hierarchical structures, but elements can be

nested into these hierarchies.
● Attributes are more difficult to manipulate by software programs that process XML.
● You cannot specify a meaningful order of attributes, but a series of elements at the same

level of nesting do have a meaningful order (they are part of the document order).

5.4 COMPONENTS OF XML 135

Apart from the metadata attributes, the aspects of attributes listed
here are related to the use of DTDs (covered later). XML Schemas
additionally enable elements to have some of these features.

The overall message is that if you use attributes simply as a way of holding the data in your
XML document, then you end up with documents that are difficult to read and maintain.
Why, then, would we ever want to use attributes instead of elements? In fact attributes are
very useful in special circumstances. These include:

● Representing metadata. Elements should be used to contain data, but attributes are
good for providing further information about that data, for example the language in
which it is presented, or perhaps the version number of the content if it relates to
some product documentation.

● Providing unique IDs for elements that can be used to cross reference data. There are
special types of attribute to do this, and these enable an XML tree to also act like a
graph (i.e. elements that are not nested inside each other can still be associated).

● Specifying a set of possible values for some piece of data. For example, you want to
say that a traffic light can be only red or green and no other colour. This is known as an
enumerated type. Attributes can be used for enumerated types but elements cannot.

● Specifying a fixed value (a constant). You can do this with an attribute but not with
an element.

● Specifying default values. You can do this with an attribute but not with an element.
● Referencing external entities (such as other files) in your XML document. Attributes

have special types that do this.

A more specialized requirement, but one that may be useful to know, is that attributes are
often better where processing speed is important. The way that some programs process
XML means that you can get better performance from these programs using attributes
(Eckstein 2002).

NOTE

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 135

136 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

The following example shows an XML document that includes attributes. In this case, we
have some ‘date’ elements with ‘calendar’ attributes. We could, of course, use an element
to contain the information about the type of calendar being used, (the Gregorian calendar,
in this example), but this could reasonably be regarded as metadata, and therefore may be
better represented as an attribute.

�?xml version�“1.0”?�

�!–– File: Example5–4.xml ––�

�dates�

�date calendar�“gregorian”�

�day�1�/day�

�month�3�/month�

�year�2005�/year�

�/date�

�date calendar�“gregorian”�

�day�2�/day�

�month�3�/month�

�year�2005�/year�

�/date�

�/dates�

What about the other uses of attributes? As we will see, they only start to be usable
when we combine XML documents with validating documents such as document type
 definitions (DTDs), so we will revisit this in Section 5.5.

CDATA sections

Some characters (such as � and �) can disrupt the correct parsing of an XML document
by a program, and make it appear to be not well-formed. One example of this might
be some kind of relational expression from a programming language using the ‘�’ and
‘�’ symbols:

�relational-expression�

if(a � b && c � d)
�/relational-expression�

In cases like this we can make the XML parser ignore the whole sequence by using a
CDATA section. CDATA stands for ‘character data’ (as opposed to PCDATA, which is
‘parsed character data’). A CDATA section looks like this:

�![CDATA[content]]�

It may look unnecessarily complex, but bear in mind that it is essential that such sections
should be easily recognized by an XML parser and not be confused with other types
of mark-up that may be present in the document. Using this complex format guarantees
that a parser will be able to recognize a CDATA section. Here is our example using CDATA:

�relational-expression�

�![CDATA[if(a � b && c � d)]]�

�/relational-expression�

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 136

5

Validating XML documents

It is possible to use an XML document for a variety of purposes as long as it is well-formed.
The problem is that a well-formed XML document can still be totally unpredictable. Since
XML-based languages are extensible, we can create new elements and attributes using
names that we decide to use, and we can put any number of elements in an arbitrary order
and nest them to any depth that we choose. The consequence of this is that XML
 documents do not, on their own, help us to know what would be an acceptable structure
for a given type of document. Ideally, we need some way of specifying:

● Which element names can be used in an XML document, how many times they
might occur and in what order

● Which attribute names can be used, which elements they can be used with, and
whether they are compulsory or optional

● Any default or allowed values that an attribute may have.

Rules like this help to describe how an XML document of a particular type should be
 structured so that others can create valid documents according to these rules. Checking an
XML document against one of these rule sets is called validation. For example, an XML
document might be used to contain the content for a magazine article. The article might
contain a title, section headings and subheadings, paragraphs of text, footnotes, sidebars
and references. We would expect these different types of content to have certain relation-
ships to one another, for example, we might assume that a subheading must appear in the
context of a heading, and precede a paragraph of text, that the references appear at
the end, the title at the beginning, and so on. We might also expect there to be one title
and one set of references, but perhaps many headings, subheadings and paragraphs. XML
on its own cannot enforce any of these rules, making it difficult to process documents
that do not follow them. Perhaps articles need to be submitted to a magazine’s editorial
department in XML format, but they must follow the type of agreed structure we have
described here. To enforce this type of structure we need to validate the XML document
against some other definition of the rules for how such a document can be organized. These
definitions can be expressed either as document type definitions (DTDs) or XML schemas
(there have been other approaches but DTDs and XML schemas are the most common).
Either type of validation may be used but for a specific validation process we would choose
one or the other (Figure 5.4).

DTDs have been around for a long time, because they are a part of SGML, whereas XML
schema are a more recent type of validation that has been strongly supported by Microsoft.
In this chapter, we focus on using DTDs to validate XML documents, because they are still
widely used, relatively simple, and used with the XHTML documents we will introduce later.
As well as defining the acceptable structure of an XML document’s elements, validating
documents can provide default values, enumerated types and other useful ‘sanity checks’
for an XML document.

Document type definitions (DTDs)

We can use DTDs to validate XML documents, but what exactly is a DTD? It is basically
a special type of mark-up that contains a definition of the permitted structure of a

5.5

5.5 VALIDATING XML DOCUMENTS 137

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 137

138 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

 particular type of document. A DTD describes, among other things:

● What names can be used for element types
● How many times a given element may, or must, be used
● In what order elements at the same level of nesting may occur
● How elements can be nested
● The attributes that may, or must, be used with a specific element

An XML document can be linked to a DTD either by including the DTD mark-up inside
the XML document itself or by referring to it externally using a URI.

Defining elements in a DTD

For our first example DTD we will describe a simplified ‘weather-forecast’ XML
 document type. In this DTD, there are no attributes, we are simply describing elements.
You will see from this example that DTD syntax is not the same as XML syntax. It does
use angle brackets, but is otherwise quite different:

�!ELEMENT weather-forecast (today, tomorrow, long-range)�

�!ELEMENT today (#PCDATA)�

�!ELEMENT tomorrow (#PCDATA)�

�!ELEMENT long-range (#PCDATA)�

The first line of the DTD indicates that the first element (weather-forecast) is the root. The
other elements (today, tomorrow and long-range) are sub-elements of the root (i.e., they
are nested inside it) and are defined in the order in which they must appear in a valid XML
document. The remaining three lines indicate that each of these three nested elements
contains parsed character data (#PCDATA). This means that the element will contain
character data that an XML processor will parse as it reads through the document. Our
first XML example (shown again here) would be valid against this DTD. We have the
 necessary root element, with the three nested elements in the correct order:

�?xml version�“1.0”?�

�!–– File: Example5–1.xml ––�

�weather-forecast�

�today�

rain
�/today�

�tomorrow�

showers
�/tomorrow�

A well-formed XML document may be validated either by a DTD
or by an XML schema

FIGURE 5.4

Well-formed
XML document

DTD (Document
Type Definition)

XML Schemaor

validate

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 138

5

�long-range�

unsettled
�/long-range�

�/weather-forecast�

In contrast, the following document is well formed, but is not valid according to our
DTD:

�?xml version�“1.0”?�

�weather-forecast�

�today�

Rain
�/today�

�tomorrow�

Showers
�/tomorrow�

�/weather-forecast�

It is invalid because the ‘long-range’ element is missing, yet the DTD says that it
should appear. Similarly, the following document is also invalid. Here, all the necessary
 elements are present, but they appear in the wrong order – ‘tomorrow’ should appear
before ‘long-range’:

�?xml version�“1.0”?�

�weather-forecast�

�today�

Rain
�/today�

�long-range�

Unsettled
�/long-range�

�tomorrow�

Showers
�/tomorrow�

�/weather-forecast�

Adding the DTD to the prolog

The DTD appears as part of the prolog of an XML document. It is possible to put the XML
and its complete DTD definition in the same document. To do this we put the DTD inside
a DOCTYPE declaration, which contains the name of the root element:

�!DOCTYPE rootelement[. . .DTD here. . .]�

The name of the root element in the XML must be same as the name used in the DTD.
In contrast, if the document is just XML that is not validated against a DTD then the
name of the root element can be chosen arbitrarily. In our example, the root element
is ‘weather-forecast’. Using this approach means that the name of the root element appears
three times, once in the DOCTYPE, once as an element declaration in the DTD and once
again in the XML document. When an XML document includes a DTD, we can also use

5.5 VALIDATING XML DOCUMENTS 139

‘long-range’ element missing here

‘long-range’ and ‘tomorrow’
elements in the wrong order

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 139

140 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

the ‘standalone’ attribute of the XML declaration to indicate this, by setting its value to
‘yes’ (i.e. this document does not depend on any external documents.)

�?xml version�“1.0” standalone�“yes”?�

�!–– File Example5–5.xml ––�

�!DOCTYPE weather-forecast[
�!ELEMENT weather-forecast (today, tomorrow, long-range)�

�!ELEMENT today (#PCDATA)�

�!ELEMENT tomorrow (#PCDATA)�

�!ELEMENT long-range (#PCDATA)�

]�

�weather-forecast�

�today�

Rain
�/today�

�tomorrow�

Showers
�/tomorrow�

�long-range�

Unsettled
�/long-range�

�/weather-forecast�

If you open this document in a standard browser, you will see that the browser does not
use the DTD for validation. Instead, it simply displays the XML file as it did before,
Figure 5.5 shows the document loaded into Internet Explorer, which acknowledges the
presence of the DTD but does not validate the XML.

Although browsers may not use DTDs to validate XML, they may check
that the DTD is well-formed and display an error message if it is not.NOTE

Standard browsers do not validate XML documents, so a DTD
used with an XML file is ignored

FIGURE 5.5

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 140

5

Validating XML with XMLSpy

In the previous example, we saw that web browsers do not validate XML documents, even
if a DTD is provided. Although there are a number of add-ons that can be used with
browsers for XML validation, none of them are particularly easy to use and they often have
limitations. Therefore it can be helpful to use some other tool to test if our XML
 documents are valid. One such tool is XMLSpy, which can be used for many different
XML-based processes. The appendix contains a brief introduction to XMLSpy and how to
use it to validate XML documents.

Separating the DTD from the XML document

Including the DTD in the same document as the XML is all very well, but we cannot
then reuse the DTD with multiple documents. Looking again at our example should
make it clear that this is not very helpful. Let us have a look at another weather forecast
document.

�?xml version�‘1.0’?�

�!–– File Example5–5.xml ––�

�weather-forecast�

�today�

Sunshine
�/today�

�tomorrow�

Sunshine
�/tomorrow�

�long-range�

Thunder storms
�/long-range�

�/weather-forecast�

This document has different content from the first, but still needs to be validated against
the DTD because it is of the same document type. In fact, we would expect there to be a
new weather forecast document every day, each of which would need to be validated against
the DTD. Rather than continually repeating the DTD inside each XML document, we can
reuse the same DTD by storing it as a separate document. Since this kind of flexibility is
frequently required, DTDs are normally written in a separate file, referenced by a URL or
local filename. Figure 5.6 shows how a single DTD, ‘forecast.dtd’, might be used to
 validate a number of separate XML files, for example one weather forecast file for each
day of the week.

System or public doctype?

When a DTD is stored separately from the XML in an external file, it can be referred to
within the DOCTYPE as either a system or a public DTD. A system doctype is from your
own local system, either a URI or a file path. For any DTDs developed internally for your
own applications, ‘system’ would be the appropriate type. In contrast, a public doctype
is one that has some kind of globally known identifier because it is used by many different
applications. A good example of this is the set of common DTDs that can be used to
 validate HTML or XHTML documents. Since many people use the same DTD to write
valid web pages, public doctypes are used. The format of a public doctype identifier is not

5.5 VALIDATING XML DOCUMENTS 141

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 141

142 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

a URL but a Formal Public Identifier (FPI). FPIs have the following structure:

-//owner//keyword description//language

We can see this structure in the public doctype for HTML 4.01 documents:

-//W3C//DTD HTML 4.01//EN

The owner is the ‘W3C’, the keyword (followed by a space) is ‘DTD’, the description is
‘HTML 4.01’ and the language is English (‘EN’). The language relates to the DTD, not the
language that the document is written in.

The software that is processing the document (e.g. a browser) should be able to recognize
these standard doctype names and locate the necessary DTD. However, because it
would not be wise to rely on this mechanism in every application, any reference to a public
 doctype must also be followed by another reference to a system doctype. If the public
 doctype cannot be found, the XML processor uses the system doctype instead. Since this is
a requirement, only the public doctype needs to be specifically labelled. The system doc-
type follows the public, but without a label. The HTML 4.01 doctype shows this clearly:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
”http://www.w3.org/TR/html4/strict.dtd”�

In this example, ‘-//W3C//DTD HTML 4.01//EN’ is the public doctype and ‘http://
www.w3.org/TR/html4/strict.dtd’ is the system doctype. The value of the system doctype
can be changed from the standard URL to a local file name if required.

The next example shows our weather forecast XML document referring to a separate
 system DTD in the local file system. Here is the content of the DTD file (‘forecast.dtd’):

�!ELEMENT weather-forecast (today, tomorrow, long-range)�

�!ELEMENT today (#PCDATA)�

�!ELEMENT tomorrow (#PCDATA)�

�!ELEMENT long-range (#PCDATA)�

This contains the DTD definition, as it appeared in our earlier example. The system
 DOCTYPE entry remains in the XML document and references the DTD filename. If the

Validating multiple XML documents with a single DTDFIGURE 5.6

monday-
weather.xml

forecast.dtd

validate

validate

validate validate

validate

validate
validate

tuesday-
weather.xml

wednesday-
weather.xml

thursday-
weather.xml

friday-
weather.xml

saturday-
weather.xml

sunday-
weather.xml

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 142

5

DTD is separate from the XML file, then the value of the ‘standalone’ attribute should
be ‘no’ instead of ‘yes’, as it was in the previous example. Since the default value for this
attribute is ‘no’, it is not actually essential here.

�?xml version�“1.0” standalone�“no”?�

�!–– File Example5–7.xml ––�

�!DOCTYPE weather-forecast SYSTEM “forecast.dtd”�

�weather-forecast�

�today�

Rain
�/today�

�tomorrow�

Showers
�/tomorrow�

�long-range�

Unsettled
�/long-range�

�/weather-forecast�

In this document, the DTD for the weather forecast (‘forecast.dtd’) is assumed to be
stored in the same folder of local file system as the XML file.

Element declarations in DTDs

As we have seen from our first DTD example, the general form of an element declaration is

�!ELEMENT element-name (regular-expression)�

The ‘regular-expression’ describes the way the element can be used. A list of comma-separated
element names defines the order in which those elements may occur, as we saw with the
nested tags inside the weather forecast:

�!ELEMENT weather-forecast (today, tomorrow, long-range)�

In contrast, an element that is defined as #PCDATA will not contain any nested elements:

�!ELEMENT today (#PCDATA)�

So far we have looked at a simple example where just a sequence of elements was defined
by the DTD. However, as we discussed in the context of XML, semi-structured data does
not necessarily need to have such a predictable structure, but we would still like to be able
to validate XML documents that exhibit semi-structured characteristics, such as optional
elements, elements appearing in different orders and elements appearing many times in the
same document. To explore validation of these types of document we will use a slightly
more complex example. Let us assume that WebHomeCover wants to manage information
about job applicants in some kind of candidate management system. This information
would contain data about candidates’ qualifications, skills, experience etc, but this
 information is likely to vary widely between different candidates. They may have different
types and numbers of qualifications, have held varying numbers of previous jobs and have
a wide variation in their skill sets. To store such data in XML we have to be able to take
advantage of its semi-structured properties to cater for these variations in data structure.

5.5 VALIDATING XML DOCUMENTS 143

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 143

144 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

We will begin with a simple but not very flexible DTD that deals simply with qualifications.
This DTD is very similar to our weather forecast DTD:

�!ELEMENT qualification (certificate, diploma, degree)�

�!ELEMENT certificate (#PCDATA)�

�!ELEMENT diploma (#PCDATA)�

�!ELEMENT degree (#PCDATA)�

The problem here is that qualifications are not as predictable as the structure of the
 weather forecast (though perhaps more predictable than the weather itself!). The DTD as
it stands assumes that each candidate will have a certificate, a diploma and a degree. This
is no good for representing candidates who do not have all three. Fortunately, DTD syntax
includes a number of operator symbols that provide the kind of flexibility that we need in
order to specify our actual requirements.

DTD operator symbols

One way we might address the current limitation of requiring all three qualifications is by
using the vertical bar operator (|), which in DTD syntax means ‘or’. In this version of the
first line of the DTD, a candidate might have any one of these elements appear in their
XML document (a certificate, a diploma or a degree).

�!ELEMENT qualification (certificate | diploma | degree) �

This is some improvement, but on the other hand each candidate can now only have any
one of these qualifications, but not more than one. We can solve this problem by nesting
the qualification element inside another element (‘qualifications’) that may occur more
than once. The asterisk operator (*) is used to specify that an element may occur zero or
more times, as in this example, where the ‘qualifications’ element consists of zero of more
‘qualification’ elements:

�!ELEMENT qualifications (qualification*)�

This is much better. Now we can have as many qualifications as we want. However, this
still may not be ideal, since the qualification element may occur zero times, meaning the
candidate has no qualifications at all. To ensure that there is at least one qualification
included in the document we can use the ‘�’ operator, which means ‘one or more’, instead
of the ‘*’ operator. In this version, there must be one or more qualifications.

�!ELEMENT qualifications (qualification�)�

Another useful specification is to make an element optional, so that it may appear zero or
one times (but no more than one.) The operator used to indicate an optional element is
the question mark. Perhaps we are interested in whether a candidate has some kind of
higher qualification as well, but do not need to know if they have more than one. We might
add a ‘higher qualification’ element, but make it optional:

�!ELEMENT qualifications (qualification�, higher-qualification?)�

From these examples we can see that we need to design the DTD specification carefully
to match our requirements. Table 5.1 summarizes the various operator symbols that we
have introduced for specifying element characteristics in a DTD.

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 144

5

Empty elements

We might choose to make an element specifically empty, which means that a valid XML
document cannot include a body for tags of this type. Tags that have a body of content are,
as we have seen, specified using the #PCDATA type. In contrast, empty elements are
defined using EMPTY. For example, the ‘higher-qualification’ element might be declared
to be empty:

�!ELEMENT higher-qualification EMPTY�

Although it is possible to have an empty element that also has no attributes, perhaps to be
used as some kind of ‘switch’ in a document to indicate simply if something is there or not,
most empty tags do include attributes. For example, the ‘higher-qualification’ element
might contain an attribute that contains the type of the qualification. We will see how to
include attributes in a DTD a little later.

The following example (‘qualifications.dtd’) is a DTD consisting purely of element
 declarations (no attributes) that includes examples of the syntax that we have introduced
so far. There are some additional elements (year, institution and name) added to our
 previous examples.

�!ELEMENT qualifications (qualification�, higher-qualification?,
institution�)�

�!ELEMENT qualification (year, (certificate | diploma | degree)) �

�!ELEMENT higher-qualification EMPTY�

�!ELEMENT year (#PCDATA)�

�!ELEMENT certificate (#PCDATA)�

�!ELEMENT diploma (#PCDATA)�

�!ELEMENT degree (#PCDATA)�

�!ELEMENT institution (name)�

�!ELEMENT name (#PCDATA)�

In the example DTD, the first line says that a ‘qualifications’ (root) element contains one
or more elements of type ‘qualification’, an optional ‘higher-qualification’ and one or more
‘institution’ elements, in that order.

The second line says that each ‘qualification’ element contains first a ‘year’ element,
then either a ‘certificate’, ‘diploma’ or ‘degree’ element. ‘certificate’, ‘diploma’ and
‘degree’ elements contain just character data. An ‘institution’ element contains a
‘name’ element.

5.5 VALIDATING XML DOCUMENTS 145

The operator symbols used in DTDsTABLE 5.1

Operator Symbol Meaning

| Or
* Zero or more
� One or more
? Optional (zero or one)

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 145

146 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

The more complex a DTD, the more flexibly-structured its valid XML documents can be.
With a DTD that has optional elements and elements that can occur more than once, there
can be many variations in structure for valid XML. The next example is a valid XML
 document for this DTD. This document contains two ‘qualification’ elements and two
‘institution’ elements, as well as an (empty) ‘higher-qualification’ element.

�?xml version�‘1.0’?�

�!–– File Example5–8.xml ––�

�!DOCTYPE qualifications SYSTEM “qualifications.dtd”�

�qualifications�

�qualification�

�year�2001�/year�

�diploma�Electronic Engineering�/diploma�

�/qualification�

�qualification�

�year�2005�/year�

�degree�Computer Science�/degree�

�/qualification�

�higher-qualification/�

�institution�

�name�Oxford University�/name�

�/institution�

�institution�

�name�MIT�/name�

�/institution�

�/qualifications�

The next XML document is also valid against ‘qualifications.dtd’. Note that it is much
 shorter, including only one ‘qualification’ and one ‘institution’, and no ‘higher-qualification’.

�?xml version�‘1.0’?�

�!–– File Example5–9.xml ––�

�!DOCTYPE qualifications SYSTEM “qualifications.dtd”�

�qualifications�

�qualification�

�year�1999�/year�

�certificate�Baking�/certificate�

�/qualification�

�institution�

�name�Springfield College�/name�

�/institution�

�/qualifications�

Attribute declarations in DTDs

So far, our validated XML examples have only used elements, but sometimes attributes can
be used to do things that elements cannot. This becomes very clear once we start to
 validate our XML against DTDs, because DTDs can provide some very useful data and
metadata about attributes. Attributes can be used in conjunction with DTDs to:

● Define a default value
● Define a set of valid values

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 146

5

● Define fixed values (constants)
● Create references between elements.

None of these features can be described with XML alone, only by using a DTD.

To start validating XML documents with attributes we need to look at the DTD syntax for
describing attributes. The attributes of an element are declared in a single list using
ATTLIST:

�!ATTLIST element-name attribute-specification. . .attribute-specification�

The element must be defined in the same DTD. More than one attribute can be specified
in a single ATTLIST element.

Each attribute specification will have the form name type value. ‘name’ is an arbitrarily
 chosen name for the attribute; each name may only appear once in the attribute
 declaration, but the same attribute name can be used in different elements. In other
words the name of an attribute, unlike the name of an element, does not have to be
unique in a DTD.

The CDATA attribute type

There are many attribute types, but the most common is CDATA, which means ‘character
data’, This is not quite the same as the #PCDATA type used with elements, because the
attribute values are not parsed by XML processors in the same way as the data in the body
of an element.

Attribute keywords

Attribute keywords specify whether an attribute is required (compulsory), implied (optional)
or fixed (constant). In this example the ‘type’ attribute of the ‘higher-qualification’ element
is shown as #REQUIRED, which makes it compulsory:

�!ATTLIST higher-qualification type CDATA #REQUIRED�

In contrast, the ‘internationally-recognised’ attribute of the ‘qualification’ element is
optional, as indicated by the #IMPLIED keyword:

�!ATTLIST qualification internationally-recognised CDATA #IMPLIED�

An attribute with a fixed value (a constant) can be indicated by the #FIXED keyword, like
this ‘name’ attribute of the ‘company’ element:

�!ATTLIST company name CDATA #FIXED “WebHomeCover.com”�

The partial DTD in the next example includes a compulsory attribute declaration; the
‘institution’ element includes a compulsory ‘is-university’ attribute. This means that any
XML document that is valid according to this DTD must include an ‘is-university’
 attribute in any ‘institution’ elements.

�!ELEMENT institution (name, location)�

�!ATTLIST institution is-university CDATA #REQUIRED�

�!ELEMENT name (#PCDATA)�

5.5 VALIDATING XML DOCUMENTS 147

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 147

148 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

Other attribute types

Not all attributes are simple character data (CDATA). Attributes that are not declared as
CDATA can include those with default values, enumerated types and those of type
NMTOKEN.

Default values are declared in quotes after the attribute name. In this example of a default
value, a ‘qualification’ element has a ‘years-of-study’ attribute with a default value of ‘3’:

�!ATTLIST qualification years-of-study “3”�

When using an enumerated type, the attribute must have one of a set of specified values
when it is used in an XML document. The possible values are separated by vertical bars
(i.e. the ‘or’ character):

(value1|value2|..)

In this example of an enumerated type, the ‘is-university’ attribute can only be ‘true’ or
‘false’. A default of ‘false’ is used here, though providing a default is not essential.

�!ATTLIST institution is-university (true | false) “false”�

Defining REQUIRED or IMPLIED is not relevant when a default value is provided, but is
otherwise. Any number of possible values can be provided for an enumerated type. Here,
the names of the days of the week are used for a ‘day-name’ attribute:

�!ATTLIST calendar day-name (Monday | Tuesday | Wednesday | Thursday |
Friday | Saturday | Sunday) #REQUIRED�

Since no default value is provided, the attribute has been marked as required.

The NMTOKEN attribute type means ‘name token’. If you use this type instead of
CDATA, it restricts the set of characters that the attribute can contain to letters, numbers,
periods, dashes, underscores and colons:

The following DTD (‘qualifications2.dtd’) is based on the one we looked at earlier, describ-
ing qualifications and institutions, but has had several attributes added to it:

�!ELEMENT qualifications (qualification�, higher-qualification?, institution�)*�

�!ELEMENT qualification (year, (certificate | diploma | degree)) �

�!ATTLIST qualification level CDATA #REQUIRED
internationally-recognised CDATA #IMPLIED

years-of-study CDATA “3”�

�!ELEMENT higher-qualification EMPTY�

�!ATTLIST higher-qualification type CDATA #REQUIRED�

�!ELEMENT year (#PCDATA)�

�!ELEMENT certificate (#PCDATA)�

�!ELEMENT diploma (#PCDATA)�

�!ELEMENT degree (#PCDATA)�

�!ATTLIST degree type CDATA #REQUIRED�

�!ELEMENT institution (name)�

�!ATTLIST institution is-university (true | false) “false”�

�!ELEMENT name (#PCDATA)�

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 148

5

Here is an XML document that is valid against this DTD.

�?xml version�“1.0”?�

�!DOCTYPE qualifications SYSTEM “qualifications2.dtd”�

�! –– File Example5–10.xml ––�

�qualifications�

�qualification level�“3” internationally-recognised�“no”�

�year�1999�/year�

�certificate�Baking�/certificate�

�/qualification �

�higher-qualification type�“Master of Baking” /�

�institution is-university�“false”�

�name� The McBaking Institute of Culinary Technology�/name�

�/institution�

�/qualifications�

Entities

ENTITY declarations can be used to define references to values that are either internal or
external to the DTD. Here for example, we declare an entity called ‘whc’ to refer to the
internal value ‘WebHomeCover.com’

�!ENTITY whc “WebHomeCover.com”�

The entity reference can be used in an XML document to refer to this value. An entity
 reference has the same format as a special character in HTML: it is preceded by an
ampersand and followed by a semicolon, for example:

�company-name�&whc;�/company-name�

When the XML document is processed by a browser or other tool, the original value is
 substituted for the entity reference.

XHTML

In the final section of this chapter, we introduce the eXtensible HyperText Markup
Language (XHTML). XHTML provides a way to write HTML documents using well-
formed and valid XML syntax, and is the W3C replacement for version 4 of HTML.

In early versions of HTML, there was no requirement that it should necessarily be well-
formed. Although DTDs have been available for validating HTML documents since
 version 2.0, they were not widely used in the early years. Further, only since HTML 4.01
have we had a ‘strict’ document type that enforces the separation of content and structure
from presentation. XHTML is a fully XML-compliant development of HTML 4.01. Like
any XML document, an XHTML document must be well-formed and should be valid
against the appropriate DTD. The first version of XHTML (version 1.0) included three
different DOCTYPES that were similar in intent to those available for HTML 4. These
were the ‘transitional’, ‘frameset’ and ‘strict’ doctypes. The frameset and transitional
 doctypes allowed many ‘deprecated’ elements to be used for backward compatibility

5.6

5.6 XHTML 149

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 149

150 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

(a deprecated element is one that should no longer be used). Only the strict doctype
 provided a rigorous validity check that separated content and structure from presentation.
We will be using the XHTML 1.1 DTD, which is the most recent version at the time of
writing and does not have transitional or frameset options. However, this version is to
be superseded by XHTML 2.0, ‘a general purpose markup language without presentation
elements . . . designed for representing documents for a wide range of purposes across the
web’ (Pemberton 2007).

Here is the XHTML 1.1 DOCTYPE:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

The XHTML 1.1 specification also says that in addition to defining the document type, the
root element of the document should also designate the XHTML namespace using the
‘xmlns’ attribute of the ‘html’ element, like this:

�html xmlns�“http://www.w3.org/1999/xhtml”�

The namespace is a way of uniquely identifying the origin of a particular tag and is based
on a URN.

Further, we should also use the ‘xml:lang’ attribute to declare the language of the page
(English in this case):

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

The ‘xml:lang’ attribute replaces the ‘lang’ attribute that was used in
HTML and was allowed in XHTML version 1.0.NOTE

As well as being well-formed, an XHTML document that is valid against the document
type must follow a number of other rules, which we will outline in this section. Perhaps
the most obvious is that XHTML tags must be written in lower case, whereas in HTML 4,
either case may be used but upper case is the normal convention.

XHTML, like strict HTML 4.01, explicitly forbids presentational mark-up, assuming the
use of CSS. Further, we should also avoid using the bold �b� or italic �i� tags, which are
still legal in XHTML version 1.1, but are likely to be invalid elements in future versions.

In general terms, XHTML is a little more demanding than HTML 4.01 in terms of being
well-formed. For example, whereas you can omit the closing BODY tag in a valid
HTML 4.01 document, because browsers are able to automatically complete some
 unfinished elements, you cannot do so in a valid XHTML document.

Empty elements

One of the main differences between strict HTML 4.01 and XHTML is the way that
empty elements are expressed. In HTML, there are a number of empty elements.

Stobart-05.qxp:Stobart-05 11/7/07 6:14 PM Page 150

5

These include LINK, IMG, BR and HR. In HTML they are normally written as if they
were opening tags, such as this line break element:

�BR�

In contrast, we should express an empty element like this in XML syntax:

�br/�

In order to ensure backward compatibility with older browsers, the W3C recommendation
is that all empty elements in XHTML should also have a space before the final ‘/�’ char-
acters. Here are some empty elements as they should be expressed in XHTML:

�link href�“webhomecover.css” rel�“stylesheet” type�“text/css” /�

�img src�“webhomecoverlogo.gif” alt�“the WebHomeCover company logo” /�

�br /�

�hr /�

No minimised attributes

XHTML attributes cannot be ‘minimised’. In HTML there are some examples where
attribute values are expressed in a shorthand form, usually where the attribute name and
its allowed value are the same. An example of this is the OPTION element in a select list,
where we can define a default selection for the list of items by adding ‘selected’ to one of
the options. Here, the ‘house’ option is the default selection.

�SELECT name�“property-type”�

�OPTION value�“house” selected�house��option�

�OPTION value�“apartment”�apartment��option�

�OPTION value�“shack”�shack��option�

�/SELECT �

In XHTML, this type of minimisation is invalid, so every attribute must have both a name
and a value. In XHTML, the select list would have to be rewritten like this:

�select name�“property-type”�

�option value�“house” selected�“selected”�house��option�

�option value�“apartment”�apartment��option�

�option value�“shack”�shack��option�

�/select�

5.6 XHTML 151

Stobart-05.qxp:Stobart-05 11/7/07 6:15 PM Page 151

5

Exercises

5.1 Here is the XML document, from Section 5.4, that is not well formed:

�?xml version�“1.0”?�

�climate�

�average-winter-temperature�

10
�average-summer-temperature�

20
�/average-summer-temperature�

�/climate�

As we saw from the example, if you load this into a browser, an error message
 complains that the closing ‘average-winter-temperature’ tag is missing when it gets to
the closing ‘climate’ tag. Why doesn’t it fail as soon as it gets to the opening ‘average-
summer-temperature’ tag?

5.2 Here is a simple DTD:

�!ELEMENT building (address, value, construction)�

�!ELEMENT address (#PCDATA)�

�!ELEMENT value (#PCDATA)�

�!ELEMENT construction (#PCDATA)�

�!ATTLIST building rental (true|false) #REQUIRED�

Write an XML document that is valid against this DTD that describes an insured
building, at 100 Seaview Road, worth £400,000, of brick and tile construction and
used as a rental.

5.3 Earlier in this chapter, we saw the following XML document:

�?xml version�“1.0”?�

�!–– File: Example5–2.xml ––�

�weather-forecast�

�today�

�general�Rain�/general�

�temperature�

�maximum�15�/maximum�

�minimum�11�/minimum�

�/temperature�

�/today�

�tomorrow�

�general�Showers�/general�

�temperature�

�maximum�20�/maximum�

�minimum�15�/minimum�

�/temperature�

�/tomorrow�

�long-range�Unsettled�/long-range�

�/weather-forecast�

Write a DTD against which this document would be valid.

152 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

Stobart-05.qxp:Stobart-05 11/7/07 6:15 PM Page 152

5

5.4 Write a DTD against which this XML document would be valid

�policies�

�description�Policies taken out in January�/description�

�policy type�“contents”�

�policy-number�1234557�/policy-number�

�policy-holder�A. Liu�/policy-holder�

�/policy�

�policy type�“buildings”�

�policy-number�1234558�/policy-number�

�policy-holder�C. Jones�/policy-holder�

�/policy�

�report-date�01/01/2008�/report-date�

�/policies�

Assume there can be zero or more ‘policy’ elements, and that the ‘type’ attribute is
compulsory.

5.5 Write a DTD that encompasses these rules for elements and attributes

Elements:

● A ‘policy-report’ root element consists of an optional ‘description’ element, one or
more ‘policy’ elements and a ‘report-dates’ element.

● ‘report-dates’ is an empty element.
● ‘policy’ elements consist of a ‘policy-number’ element, followed by either a

 ‘personal-customer’ element or a ‘corporate-customer’ element.
● ‘description’, ‘policy-number’, ‘personal-customer’ and ‘corporate-customer’ are

parsed character data.

Attributes:
● ‘policy’ elements have a compulsory type attribute that can only have the value

‘buildings’ or ‘contents’.
● ‘report-dates’ has two attributes, a compulsory ‘start’ attribute and an optional

‘end’ attribute.

5.6 Now write an XML document that is valid against the DTD that you created for
Exercise 5.5.

5.7 Take the HTML document from Example 4.12.htm, which demonstrates the three
region layout, and convert it to valid XHTML. You will need to:

● Change the DOCTYPE
● Add the namespace and language to the opening HTML tag
● Change all the element names to lower case
● Make sure the empty elements are correctly terminated.

EXERCISES 153

Stobart-05.qxp:Stobart-05 11/7/07 6:15 PM Page 153

References and further reading

BBC (2005) Radio Times. http://www.radiotimes.com/
Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. and Yergeau, F. (2004) Extensible Markup

Language (XML) 1.1. W3C. http://www.w3.org/TR/2004/REC-xml11–20040204/
Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. and Yergeau, F. (2006) Extensible Markup

Language (XML) 1.0 (Fourth Edition). W3C http://www.w3.org/TR/REC-xml/#sec-origin-goals
Eckstein, R. (2002) Java Enterprise Best Practices. Farnham: O’Reilly.
Eden, R. (2005) XMLTV wiki. http://xmltv.org/
Pemberton, S. (2007) XHTML2 Working Group Home Page. http://www.w3.org/MarkUp/
Uniprot. (2005) The Universal Protein Resource. http://www.ebi.uniprot.org/index.shtml

154 CHAPTER 5 CONTENT, STRUCTURE AND VALIDATION: XML, DTD AND XHTML

5

We began this chapter by describing the limitations of HTML in its role as a mark-up
 language that combines page content, structure and presentation. We introduced
the concept of semi-structured data and saw how XML follows its principles. We looked
at how XML is a metalanguage, able to be used to define any number of specific
mark-up languages due to its extensible nature. We explored the concept of validation,
both for XML and HTML, and finally XHTML, which is the evolutionary path that has
seen the joining together of HTML and XML. Along the way we saw how document
 validation may be performed using DTDs, to ensure that our documents are structured
correctly.

SUMMARY

Stobart-05.qxp:Stobart-05 11/7/07 6:15 PM Page 154

155

CHAPTER 6

Introduction to JavaScript

LEARNING OBJECTIVES

● To understand the role of client-side scripting languages in supporting
application processes within the browser

● To understand the key features of the JavaScript language

● To be able to use the objects, properties and methods of the DOM to
interact with browsers and HTML documents

● To be able to write simple scripts that manipulate JavaScript variables

● To understand how to write JavaScript functions and to put them into
separate files that can be called from scripts in web pages

In this chapter, we introduce the JavaScript language, which can be used to write code that runs
inside the browser. We apply some of the most important concepts in JavaScript, including the
document object model (DOM) and the built-in JavaScript objects. Examples in this chapter show
how to use the properties and methods of JavaScript objects, how to work with simple data types
including numbers, strings, dates and arrays, and how to use the arithmetic operators. We explore
the control structures of JavaScript programming and see how to write code in script elements,
functions and external files.

JavaScript – what and why?

Scripting languages are lightweight programming languages that are usually interpreted rather
than compiled and run inside a particular environment. ‘a client-side script is a program that
may accompany an HTML document or be embedded directly in it’ (Ragget et al. 1999).

JavaScript is the most commonly used of a number of scripting languages that can run
inside web browsers. JavaScript code can be embedded in, or called from, HTML

6.1

INTRODUCTION

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 155

156 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

 documents and these scripts can generate page content dynamically. In general, JavaScript
is used for three main purposes:

● To improve the visual look and feel of the user’s experience using a browser-based
application. For example, JavaScript can be used to create pop up windows and
 interactive menus, and to enable parts of the page, such as images, to respond to
mouse events, such as the mouse pointer passing over them. JavaScript, combined
with the DOM and cascading style sheets (CSS), is the basis for Dynamic HTML
(DHTML), which enables browser-based applications to become more interactive.

● To offload some of the web application processing from the server to the client. A
good example of this is the ability to perform client-side form validation, checking
the contents of an HTML form before it is submitted to the server for further
 processing. Not all validation can be done on the client, but simple things like
 checking that required fields are not empty can still be very useful.

● To enable Asynchronous JavaScript and XML (Ajax) implementations to provide a
more seamless interaction between client and server.

JavaScript was originally developed in 1995 by Netscape and introduced into Netscape
Navigator 2.0. It was originally called ‘LiveScript’ but later became ‘JavaScript’, and is
therefore often confused with Java, though there are many differences between them.
Although the term ‘JavaScript’ is widely used, strictly speaking the name only applies to
the Netscape version. The version that runs in Microsoft browsers is called ‘JScript’, and
there is also a standard version of the language known as ‘ECMAScript’. ECMA is a
European standards consortium that began as the European Computer Manufacturers’
Association, hence the acronym.

The document object model (DOM)

The DOM is a W3C specification that enables scripting languages, like JavaScript, to access
and update the content, structure and style of documents, regardless of the platform or
scripting language being used. The first DOM specification (level 1) was published in 1998,
the second (level 2) in 2000 and the third (level 3) in 2004. The DOM consists of a set of
core interfaces that apply to any structured document, with additional interfaces that are
specifically intended for use with XML or HTML documents. As HTML has grown closer
to XML with the XHTML specification, this distinction between XML and HTML has
become less important. The term ‘DOM level 0’ is sometimes used to refer to the de facto
object model that was used in browsers (such as Internet Explorer 3 and Netscape
Navigator 3) prior to the first formal DOM specification. Some parts of the DOM API that
relate specifically to HTML were included to ensure backward compatibility with these
earlier document models.

The DOM represents a document as a hierarchy of nodes, some of which can have child
nodes and some that are leaf nodes. You will recognize core aspects of the DOM from our
prior discussions of the structure of XML documents. For example the document node can
only have one child of type element (which of course is the root element of the document.)
An element node, however, can have multiple child nodes, and these may also be elements.
A text node is a leaf, meaning that it cannot have any child nodes. As we look at JavaScript,
you will find that it has its own way of modelling the document object, some of which
comes directly from the standard W3C DOM and some of which is specific to JavaScript.

6.2

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 156

6

6.3 CHARACTERISTICS OF JAVASCRIPT 157

Characteristics of JavaScript

The language constructs in JavaScript are similar to a number of other languages, including
C, C��, C# and Java, but there are some important differences. Perhaps the most
 obvious difference is that JavaScript is loosely typed, meaning that when we declare a
 variable we only have to declare its name, not its type. We can also use the same variable
to reference different types of data at different times. This is not possible in strongly typed
languages like Java, but is possible when using PHP, which is also loosely typed.

JavaScript is not a fully object-oriented language, and does not allow the creation of
new object types (though more recent versions of ECMAScript have begun to move in
this direction). Rather it is an object-based, or prototype language, where there are a
 number of built-in objects and object types that can be used in programs. For example the
top-level object in the JavaScript DOM is the window, which represents the browser
 window (or frame).

Setting the default scripting language for a web page

Since JavaScript is only one of a number of scripting languages that may be supported by
browsers (others include VBScript and Tcl), it is necessary to specify that JavaScript is the
language being used in a particular page. The ‘meta’ element should be used inside the
‘head’ element to set the default scripting language, like this:

�meta http-equiv�“Content-Script-Type” content�“text/javascript” /�

It is important to set the default scripting language for scripts that are linked to intrinsic
events, such as mouse buttons being pressed, keys on the keyboard being pressed and
HTML documents being loaded.

6.3

‘text/javascript’ is likely to be replaced by ‘application/javascript’ in
forthcoming standards but is not yet widely supported by browsers.NOTE

Adding scripts to web pages

Scripts can be added to a web page by using �script�. . .�/script� elements. These can
be added either to the head or the body elements of the HTML, or even as a separate
 element outside of the page definition. Scripts can also be written as reusable functions in
separate files (described in Section 6.9). Script elements that are not part of JavaScript
functions will be run when the page is loaded, whereas functions can be invoked at other
times, for example, by clicking on a button. In addition to setting the default scripting
 language in the document’s meta tag, each script element should also define the
scripting language being used for that particular element by setting the type attribute to
‘text/javascript’. All script elements that use JavaScript, regardless of where they appear
in the document, should therefore appear like this:

�script type�“text/javascript”�

. . . JavaScript source code goes here
�/script�

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 157

158 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

JavaScript objects

Now we know what sort of tag to use to include JavaScript in our web pages, what type of
code goes into these elements? One important aspect of JavaScript is its ability to interact
with objects of various types. Some of these relate to the DOM components of the
 browser environment, such as window, document, location and navigator. Some relate to
common data types such as Array, String and Date, while others, such as Math, provide
some standard utility functions. The objects that relate to the browser environment
have parent–child relationships, where one object contains another. Figure 6.1 shows the
 relationships between just a few of the browser-related JavaScript objects. The window
object contains the document (that is loaded in the browser window) and the location and
navigator objects, and the document may contain a form that in turn contains various
HTML controls such as text fields and buttons.

Object properties

JavaScript objects have properties, methods and event handlers. Properties are values that
reflect the state of an object; methods are operations that an object can perform; and event
handlers enable state changes or methods to be invoked when an event, such as a button
being pressed, a component losing or gaining focus, or a document being loaded, occurs.An
object’s properties can be accessed using ‘dot’ notation, where the name of the object is
followed by the name of the property, separated by a dot:

object.property

The value of the property can be set using the ‘ � ’ operator. One of the properties of the
document object for example is the title. This is the text that appears in the title bar at the
top of the browser window. This example shows the title property of the document being set.

document.title�“JavaScript document title”

Here is the full source of an XHTML page that sets the document title property using a
script element in the body of the page. Note that the XHTML head element needs to
 contain a title element, even if it is empty, in order to be valid XHTML and, of course, for
JavaScript to locate the element in order to populate it.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

6.4

The relationships between some browser-related JavaScript objectsFIGURE 6.1

location

submit

window

text

password

document form

…

*

navigator

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 158

6

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title��/title�

�/head�

�body�

�!–— File: Example6–1.htm —–�

�script type�“text/javascript”�

document.title�“JavaScript document title”
�/script�

�/body�

�/html�

Since scripts included in the body are executed when the document is loaded, the title bar
appears as shown in Figure 6.2 when the document is loaded into a browser (this example
uses Internet Explorer 7).

Comments in JavaScript source code

There are two ways that comment syntax can be useful in JavaScript. First, we can use
the JavaScript comment syntax simply to add comments to our code to help others to
understand it, and second, we sometimes need to ‘hide’ JavaScript code from the
 browser, for reasons we explain shortly.

There are two types of comment syntax in JavaScript, for single-line or multiple-line
 comments. Single line comments, similar to C�� comment syntax, are preceded by two
forward slashes:

// this is a single line comment

Multiple-line comments use C-style syntax, beginning with a forward slash and an asterisk,
and ending with an asterisk and a forward slash:

/*
This is a
multiple-line comment
*/

6.4 JAVASCRIPT OBJECTS 159

The Internet Explorer 7 title bar set using the ‘document.title’ propertyFIGURE 6.2

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 159

160 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

These types of comment are useful to help other JavaScript developers understand the
scripts you have written. The second use of comment syntax is to wrap an HTML or XML
comment, combined with a JavaScript single line comment, around the code in your script
elements. There are two reasons to do this:

● If the client’s browser does not support JavaScript, or if JavaScript is disabled, the
code can be hidden from the browser.

● If you want the rest of your page to be valid XHTML, JavaScript syntax needs to be
hidden from the validator, because some characters commonly used in JavaScript
(e.g. ‘�’ and ‘�’) cause problems in validation.

The way that we wrap comments around our scripts is to precede them with the HTML
comment opening sequence, ‘�!--’, which JavaScript treats as if it were a single line
 comment. Then at the end of the script, use the HTML comment closing sequence but
precede it with the JavaScript single-line comment, i.e. ‘// -- �’ The effect of this is that
JavaScript ignores the closing HTML comment character but the browser recognizes it as
the end of the HTML comment. Here is a modified version of the script that changes the
document’s title property but with the comment syntax added. Using this approach means
that your scripts will not cause problems in browsers where JavaScript is not supported and
your documents can still be valid XHTML.

�script type�“text/javascript”�

�!–—
document.title�“JavaScript document title”
// —–�

�/script�

Objects as properties

Some properties of objects are also objects. For example the location property of the
 window is actually a ‘Location’ object, with its own properties and methods. We can
 navigate through the object hierarchy using dot notation, access the ‘location’ property of
the ‘window’ object and then access its own properties. In this example, the ‘protocol’
property of the ‘location’ is accessed:

window.location.protocol

Here is an XHTML page with a script that sets the document’s title property using the
value of the location’s protocol.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title��/title�

�/head�

�body�

�!—– File: Example6–2.htm –—�

�script type�“text/javascript”�

�!–—

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 160

6

document.title � window.location.protocol
// —–�

�/script�

�/body�

�/html�

Figure 6.3 shows the title bar of Mozilla Firefox 2, displaying the http: protocol when a file
has been loaded into the browser. Depending on what the browser is being used to display,
other possible values of the ‘protocol’ property would include ‘file:’ and ‘ftp:’.

6.4 JAVASCRIPT OBJECTS 161

The Mozilla Firefox 2 title bar set using the ‘protocol’ propertyFIGURE 6.3

‘Location’ is not a DOM object, but a JavaScript object, based on the
‘location’ property of the window in the DOM hierarchy.NOTE

Object methods

Methods are things that an object can do. Simple examples of object methods are the
‘write’ and ‘writeln’ methods of the ‘document’ object, which allow us to write page
 contents to the current document. The only difference between them is that ‘writeln’ adds
a carriage return and new line to the generated HTML after writing the contents, but this
does not insert a line break element into the actual HTML document. To invoke a method,
we use the same dot notation as when accessing properties.

Methods can have parameter arguments passed to them, in parentheses. In this example,
a ‘write’ method is passed some string data (which may include mark-up) as a parameter.
String data is a collection of characters enclosed by speech marks (single or double).

document.write(“�h2�Subheading�/h2�”)

Positioning scripts in the document

In the next example we use the ‘document.write’ method to illustrate the difference
between putting a script in the body of the document as opposed to the head. If we
put a script in the document body, we can position it within the rest of the document

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 161

162 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

in a specific place. In contrast, scripts in the head element are run before the body
 content is rendered. The following example shows a script element that writes out
a subheading being placed between HTML tags that write out a main heading and some
paragraph text.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript�/title�

�/head�

�body�

�!—– File: Example6–3.htm –—�

�h1�Main Heading�/h1�

�script type�“text/javascript”�

�!—–
document.write(“�h2�Subheading�/h2�”)
// —–�

�/script�

�p�paragraph text�/p�

�/body�

�/html�

The page displayed in a browser (see Figure 6.4) shows that the script has been executed
in the position where it appears in the body, between the main heading and the paragraph.

In contrast, this version of the page has the script in the ‘head’ element:

�?xml version � “1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns � “http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript�/title�

�script type�“text/javascript”�

�!––
document.write(“�h2�Subheading�/h2�”)
// —–�

�/script�

�/head�

�body�

�!—– File: Example6–4.htm –—�

�h1�Main Heading�/h1�

�p�paragraph text�/p�

�/body�

�/html�

Figure 6.5 shows the resulting document in the browser. Note that the script has been run
before the body, meaning that the subheading now comes first.

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 162

6

In summary, you should put your scripts in the body element if the order of their execution in
terms of other body elements is important. Otherwise they can be put into the head element.

Debugging JavaScript

Before long, you will no doubt be having problems with errors in your JavaScript code, but
how can you see what is wrong? In many cases, faulty JavaScript will mean the browser
just displays a blank page. Fortunately, browsers provide various tools for debugging
JavaScript. In Internet Explorer 7, select Tools, Internet Options. Select the Advanced tab
and check the ‘Display a notification about every script error’ box. If something goes wrong
with a page containing JavaScript, a yellow triangle with an exclamation mark will appear
in the bottom left corner of the browser frame. If you double-click this, you will get a pop-
up dialog that will show you any error messages. However, the debugging services in
Internet Explorer are not always very helpful and it can be easier to debug your scripts in
other browsers. Mozilla Firefox 2, for example, has a very good error console that shows a
lot of information about JavaScript errors. To access this console, just select Tools, Error
Console. Similarly, Opera 9 has an error console that can be accessed from its Tools menu;
select Advanced and then Error console.

6.5

6.5 DEBUGGING JAVASCRIPT 163

The script appears in its sequence within the document bodyFIGURE 6.4

The head element’s script output appears before the content of the
document body

FIGURE 6.5

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 163

164 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

JavaScript types and variables

In an earlier section we looked at some aspects of JavaScript objects that relate to the
JavaScript DOM; the ‘window’ and ‘document’ objects and some of their properties. In
this section we look at some data types in JavaScript, some of which are very simple
types (numbers, strings, Booleans) and others that represent more complex types (Date,
Math, Array). We also see how variables can be declared, and how their values may
be manipulated, for example by using arithmetic expressions.

Declaring and using variables

In the examples we have seen so far, JavaScript objects have been used to modify the browser
window or to provide values that have been written directly to the document object. Sometimes,
however, we need to store a value, which may be the result of calling an object’s method, in a
variable. In JavaScript, a variable is just a name used to refer to a particular value. It is not
declared to be of any specific type, but is simply declared using the reserved word ‘var’, e.g.

var myVariable

Although variables need not necessarily be declared using the ‘var’ reserved word, it is
important to understand that declaring a variable without preceding it with ‘var’ will make
it a global variable. Global variables are visible to all scripts in the current page. Therefore,
unless you really need to declare a global variable, always use the ‘var’ keyword. There are
a few simple rules for JavaScript variable names:

● The first character must be a letter (upper or lower case) or an underscore.
● The rest of the name can include upper or lower case letters, numbers and

 underscores.
● Names should not begin with two underscores because names in this format are used

by JavaScript for internal purposes.
● Names cannot include spaces.
● Names cannot be JavaScript reserved words.
● Names are case sensitive.

Although variables do not have a specific type, the values that they refer to do have a type.
These types include simple numbers, strings (of characters) and Booleans. It can be useful
to name variables in such as way that their type is indicated by their name. For example
we can start each variable name with a three-letter indicator of its type, e.g. ‘int’ for
 integers, ‘boo’ for Booleans, ‘str’ for strings, and so on. This fragment of JavaScript shows
some literal values of these three types being assigned to three variables. In each case, the
variable declaration is the same, since no data typing is used.

var intSomeNumber � 4
var strSomeCharacters � “characters”

6.6

In earlier versions of Firefox, the error console was called the JavaScript
console, so the relevant menu item is ‘JavaScript Console’.NOTE

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 164

6

var booSomeIndicator � true

In the example above, the three variables are declared on separate lines. Using a new line
as a separator between different statements in JavaScript is acceptable, but statements
should really be separated by semicolons, like this:

var intSomeNumber � 4;
var strSomeCharacters � “characters”;
var booSomeIndicator � true;

This approach is more robust than just using new lines, because the semicolon will sepa-
rate statements even if they appear on the same line.

Arithmetic on numeric variables

We can perform arithmetic with JavaScript numeric variables using these five operators:

add �
subtract �
multiply *
divide �
modulus %

All arithmetic statements have the same format, namely that a variable on the left of
an assignment (�) operator is made to equal the result of an arithmetic expression on
the right:

var � expression;

Some examples (where the ‘flt’ prefix indicates a floating point number) might be

var intTotalBananas � intMyBananas � intYourBananas;
var fltNetPay � fltGrossPay — fltDeductions;
var fltArea � fltHeight * fltWidth;
var fltDistanceInKm � fltDistanceInMiles / 0.62137;
var intParentsBiscuits � intNumberOfBiscuits % intNumberOfChildren;

Increment and decrement operators

There are also some simple operators to increment and decrement the value of a variable
by. The most commonly used is probably the ‘��’ operator, which adds 1 to a variable.

var intCounter � 1;
intCounter��;

In this example, the variable ‘intCounter’ would be incremented to hold the value 2.
We can see that the increment operator is simply shorthand for

intCounter � intCounter � 1;

There is also a decrement operator, which, logically enough, is ‘--’ and subtracts 1 from the

6.6 JAVASCRIPT TYPES AND VARIABLES 165

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 165

166 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

value of a variable:

intCounter —–;

This would subtract 1 from the current value of ‘intCounter’, and is shorthand for

intCounter � intCounter – 1;

Prefix and postfix operators

The previous examples of the increment and decrement operators both used ‘postfix’ nota-
tion (i.e., the ‘��’ or ‘ – ‘ appears after the variable). We may also use ‘prefix’ notation
(the operator appears before the variable):

postfix notation: intCounter�� or intCounter��

prefix notation: ��intCounter or ��intCounter

This makes no difference if the operator is not used as part of a larger expression, but can
be significant if it is. If one of these operators is used in prefix notation, then the operator
will execute before the rest of an expression, but if postfix notation is used then it will be
executed afterwards. For example, if the value of our ‘intCounter’ variable is to be assigned
to another variable in the following expression:

var intCounter � 1;
var intCurrentCount � intCounter��;

The value of ‘intCurrentCount’ is 1, because the increment operator (which adds 1 to
‘intCounter’) is evaluated after the assignment of the value of ‘intCounter’ to
‘intCurrentCount’ (postfix notation). With prefix notation, where the increment takes
place before the assignment, the value of ‘intCurrentCount’ will be 2:

var intCounter � 1;
var intCurrentCount � ��intCounter;

To avoid confusion, the increment and decrement operators will not be used as part of
 larger expressions in this book and the postfix notation will be adopted in all cases.

Other shorthand expressions

The increment and decrement operators are appropriate only when we need to add 1 to,
or subtract 1 from, the existing value of a variable. However, we also have shorthand for
changing the value of a variable by arithmetic on its existing value. As one example, we
could replace the expression:

fltVariable � fltVariable � 5;

with:

fltVariable �� 5;

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 166

6.6 JAVASCRIPT TYPES AND VARIABLES 167

6

As you can see, when we are changing the value of a variable, this shorthand form simply
avoids having to write the name of the variable twice. Variables can be decremented
 similarly, so to subtract 4 from ‘fltVariable’ we could write:

fltVariable �� 4;

Table 6.1 shows examples of shorthand expressions for all five arithmetic operators.

Order of precedence

When writing expressions that contain more than one arithmetic operator, you need to be
aware of the ‘order of precedence’ i.e., which part of the expression will be evaluated first.
There is a standard (and quite large) table for this that applies to virtually all languages, but
the most important parts of it are shown in Table 6.2.

Consider this example:

var intVar � 4 � 2 * 3;

Using the shorthand expressions for arithmetic operatorsTABLE 6.1

Usual expression Shorthand expression

fltVariable � fltVariable � 5; fltVariable ��5;
fltVariable � fltVariable – 4; fltVariable ��4;
fltVariable � fltVariable * 2; fltVariable *�2;
fltVariable � fltVariable / 3; fltVariable /�3;
fltVariable � fltVariable % 4; fltVariable %�4;

Some important elements of the order of precedence tableTABLE 6.2

Order of precedence Symbols Description

Higher () parentheses
�� increment and decrement operators
—
* multiply, divide and modulus operators
/
%
� addition and subtraction operators
�

* � shorthand assignment expressions
/ �

� �

- �

Lower % �

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 167

168 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

Since the multiplication is executed before the addition, the result would be 10. If this
is not what we want, we can use parentheses to change the order in which parts of an
expression are evaluated. To force the addition to be executed first we can write

var intVar � (4 � 2) * 3;

As you would expect, this gives the result of 18, since the addition is now performed
before the multiplication. If two operators of the same precedence (i.e., add and subtract,
or multiply, divide and remainder) appear in the same expression, then they are evaluated
from left to right. For example, in the following expression, the multiplication is evaluated
before the division, giving the answer 15:

var intVar � 10 * 3 / 2;

Using and creating objects

In Section 6.4, we introduced some of the JavaScript objects that relate to the DOM, such
as ‘document’ and ‘window’. There are a number of other types of object available to us in
JavaScript. Some of these are single objects that can be used directly, such as the ‘Math’
object, while others are types that we can create on the fly, such as Strings and Dates. In this
section, we introduce some of these object types and see how they can be created and used.

The Math object

The arithmetic operators are fine for simple calculations, but sometimes we need the
 services of something that can do more complex mathematics. In these situations,
the ‘Math’ object provides support for a number of mathematical operations, including
methods for geometry, raising a number to a power, rounding and random-number
 generation. The following script uses the ‘random’ method to generate a pseudo-random
number between zero and one.

�!—– File: Example6–5.htm —–�

�script type � “text/javascript”�

�!—–
document.write(“Here is a random number between zero and one: “);
document.write(Math.random())

// —–�

�/script�

Figure 6.6 shows one possible output from this script. Since the number generated by the
random method is always between zero and one, deriving random numbers in other ranges,
or random integers, requires some further work.

Since the various methods of the Math class return the values of mathematical operations,
these returned values may be assigned to variables, for example,

var fltRandomNumber � Math.random();

The Math class also has some properties representing common mathematical values. One
of these is ‘PI’. The following script element uses ‘Math.PI’, and the ‘Math.pow’ method,

6.7

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 168

6

which raises the first parameter to the power of the second, to calculate the area of a
 circle. Though this is a simple example, it shows both properties and methods of the
Math class, assigning results to variables, and using parentheses to ensure that parts of
the calculation take place in the correct order (that is, we square the radius before
 multiplying by ‘PI’).

�!—– File: Example6–6.htm —–�

�script type�“text/javascript”�

�!—–
var intRadius � 10;
var fltArea � Math.PI * (Math.pow(intRadius, 2));
document.write(fltArea);

// —–�

�/script�

Figure 6.7 shows the result of the calculation displayed in the browser.

Strings

A JavaScript string is simply a sequence of zero or more characters enclosed by either
 single or double quotes. It does not matter which of these you use, but having the choice
does enable you to enclose one type of quote within another, which can be particularly

6.7 USING AND CREATING OBJECTS 169

A pseudo-random number generated by the Math.random() methodFIGURE 6.6

The area of the circle resulting from the calculation using the Math objectFIGURE 6.7

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 169

170 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

 useful when combining JavaScript and HTML. For example, this is a valid JavaScript
string, containing HTML that includes quoted attributes:

‘�img src � “logo.gif” alt � “logo”�’

Or, of course, we could switch the quote characters around:

“�img src � ‘logo.gif’ alt � ‘logo’�”

Another useful aspect of strings is that they can be concatenated (joined together) using
the ‘�’ operator. Here, for example, we write out some text and the document title by
concatenating them:

document.write(“Document title is “ � document.title);

You can concatenate different data types together with strings and they will be treated as a
single string. Strings also have a number of properties and methods. The ‘length’ property,
for example, returns the number of characters in a string, while the ‘substring’ method
returns part of the string between two specified character positions. The following script
uses both the ‘length’ property and the ‘substring’ method to display the last character of
a string. Note that the substring returned by the method starts at the character position
after the one specified by the first parameter, but includes the character at the position
specified by the second parameter:

�!—– File: Example6–7.htm –—�

�script type � “text/javascript”�

�!—–
var strFullString � “a string”;
var intLength � strFullString.length;
var strSubString � strFullString.substring(intLength-1, intLength);
document.write(“Last character is “ � strSubString);

// —–�

�/script�

Figure 6.8 shows the result of the script in a browser.

A substring displayed in a browser windowFIGURE 6.8

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 170

6

Date objects

Unlike objects that exist as part of the browser environment, and the ‘Math’ object which
is built into JavaScript, ‘Date’ objects, which represent both a date and a time, need to be
created when required. Being able to create ‘Date’ objects on the fly also means that we
can create and manipulate as many of them as we like. Creating objects in JavaScript is
done using the reserved word ‘new’ and the constructor method, which has the same name
as the object type and, like other methods, is followed by parentheses. The newly created
‘Date’ object can be assigned to a variable:

var dateToday � new Date();

What can we do with a date? Basically we can either use the default settings, which include
the date and time of its creation, or specifically set its values. If you simply write the date
object to the document, you will get the current date and time of the locale being used
by your machine, relative to coordinated universal time (UTC), which is based on
 Greenwich Mean Time. You can also display the current date and time in UTC, using the
‘toUTCString’ method, or display the time in the current locale with reference to UTC,
using the ‘toLocaleString’ method. In the following script, we display the same date object
in these three different ways:

�!–— File:Example6–8.htm –—�

�script type�“text/javascript”�

�!–—
var dateToday � new Date();
document.write(“The current date and time is: “ � dateToday);

document.write(“�br /�The date and time in Coordinated Universal Time is:
“ � dateToday.toUTCString());

document.write(“�br /�The date and time using the current locale is:
“ � dateToday.toLocaleString());
// —–�

�/script�

The way that different browsers display dates varies slightly. Figure 6.9 shows how the
three versions of the date are displayed in Mozilla Firefox 2, but other browsers will give
slightly different results in terms of presentation.

Table 6.3 shows some of the other methods of the Date class.

Arrays

An Array is a collection of values that have the same name but are identified by an index
value, which appears in square brackets. Like Date objects, Arrays can be created on
the fly, and we can have as many of them as we like, so again they are created using the
reserved word ‘new’, for example:

var arrMyArray � new Array(size);

The ‘size’ parameter would be a number specifying the number of elements in the array.
We can set or retrieve the values in the array using square brackets containing an index

6.7 USING AND CREATING OBJECTS 171

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 171

172 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6
number. The array index starts at zero, so to set a value in the first element of the array,
we use zero in the brackets.

arrMyArray[0] � “a string”;

Since the array has no specified type, the elements of the array can contain values of different
JavaScript types. For example the next element of the array could contain a number:

arrMyArray[1]�10;

Here is a simple script that uses an array to write the name of the current day to the
 document. It uses a JavaScript Date object to get the number of the day of the week (using
the ‘getDay’ method), then uses an array of strings to return the actual name of the day.
Note that the ‘getDay’ method uses a zero to represent Sunday and then counts up from
there through the days of the week, with six representing Saturday. This fits in quite
 neatly with an array, which also starts its index at zero.

�!—– File: Example6–9.htm —–�

�script type�“text/javascript”�

The result of a script that displays a ‘Date’ object in Mozilla Firefox 2FIGURE 6.9

Some methods of the Date classTABLE 6.3

Method Purpose

getDate Returns or sets the day of the month (a number between 1
setDate and 31)
getDay Returns the day of the week as a number between 0

(Sunday) and 6 (Saturday)
getHours Returns or sets the hours value as an integer between 0
setHours (midnight) and 23 (11 pm)
getMinutes Returns or sets the minutes value as an integer between 0
setMinutes and 59
getSeconds Returns or sets the seconds value as an integer between 0 and 59
setSeconds
getFullYear Returns or sets the year value as a four-digit integer
setFullYear
getTime Returns or sets the date as the number of milliseconds since the
setTime beginning of January 1st 1970

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 172

6

�!—–
var date�new Date();
var arrDayNames�new Array(7);
arrDayNames[0]�“Sunday”;
arrDayNames[1]�“Monday”;
arrDayNames[2]�“Tuesday”;
arrDayNames[3]�“Wednesday”;
arrDayNames[4]�“Thursday”;
arrDayNames[5]�“Friday”;
arrDayNames[6]�“Saturday”;
var strToday�arrDayNames[date.getDay()];
document.write(“Today is “ � strToday);

// —–�

�/script�

Figure 6.10 shows the result of running this script on a Thursday.

Rather than assigning the elements of an array one at a time, an alternative approach is to
use an initialisation list, where instead of creating an empty array and then adding data to
elements using the index numbers, we simply provide the actual data in a comma-separated
list. For example we can both create and populate the ‘arrDayNames’ array like this:

var arrDayNames �

[“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”, “Saturday”];

Control structures

JavaScript has control structures for looping and decision-making similar to those in many
other languages. The ‘if ’ and ‘if. . .else’ structures can be used to evaluate a conditional
statement and respond accordingly. There are also two types of loop, the ‘while’ loop and
the ‘for’ loop.

6.8

6.8 CONTROL STRUCTURES 173

Using an array of day names to display the current dayFIGURE 6.10

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 173

174 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

‘if. . .else’ statements

An ‘if ’ statement consists of two (and only two) different courses of action and a
 condition. A condition in JavaScript will always return a Boolean value, and which of the
two courses of action is taken depends on whether that value is true or false. One course
of action may be, in fact, to do nothing. ‘if ’ statements look like this:

if(condition)
{

// do this
}
else
{

// do this instead
}

The ‘else’ part is optional. If the condition is false and there is no ‘else’ part then the script
will carry on executing after the ‘if ’ statement.

Relational operators

When writing any kind of conditional statement, including ‘if ’ statements and loops, we
need to express conditions that compare variables using relational operators. The operators
used in JavaScript are shown in Table 6.4.

The only operators that might cause confusion here are the ‘identical to’ and ‘not identical
to’ operators. They differ from the ‘equal to’ and ‘not equal to’ operators only in that some
type conversions are allowed for equality that do not apply with identity. The example
shown in the table should illustrate this. If we test the expression:

1 �� true

Then this will return true, because 1 can be converted to the Boolean value ‘true’.
However, this expression:

1 ��� true

will return ‘false’, since the identity operator does not allow type conversions when
 making comparisons.

JavaScript relational operatorsTABLE 6.4

Condition Relational Operator Example

equal to �� if(intTemperature �� 100)
Identical to ��� if(1 ��� true)
not equal to !� if(chrGrade ! � ‘F’)
not identical to !�� if(1 ! �� false)
less than � if(fltSales � fltTarget)
less than or equal to �� if(int EngineSize �� 2000)
greater than � if(intHoursWorked � 40)
greater than or equal to �� if(intAge �� 18)

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 174

6

To evaluate more complex conditions we need to use logical operators to combine the
 simple relational operators shown in Table 6.4. The three logical JavaScript operators are
shown in Table 6.5.

All these expressions return either true or false. The ‘not’ operator (!) can be confusing because
it returns ‘true’ if the expression is ‘false’. For example, the expression ‘if(!booFormValidated)’
in the table will be true if ‘booFormValidated’ is false, i.e., if the form has not been validated
then ‘not validated’ is true. We often find this operator being used to test Boolean ‘flag’
 variables that indicate when something has happened. The ‘not’ operator is matched by the
ability to do a test for true, for example ‘if(booFormValidated)’ is an equally valid expression.

Using selection: simulating throwing a coin

The next script example makes a selection using an ‘if ’ statement. This selection is based
on using a randomly generated number to simulate throwing a coin, which may land either
heads or tails. In order to represent the flipping of the coin, we need to randomly
 generate a value, which of course we can do with the ‘Math.random’ method, which
returns a random value between 0.0 and 1.0. According to the ECMA specification, the
function may return zero but should never return one.

var fltRandomNumber � Math.random();

Having got this value from the ‘random’ method, the script then uses an ‘if ’ statement to
choose whether the coin is showing heads or tails. If the random number is less than 0.5
then the coin is set to heads, otherwise it is set to tails. Of course, from the point of view
of the program it makes no difference whether we use ‘less than’ or ‘greater than’, since
either way we get a 50/50 chance (more or less).

�!—– File: Example6–10.htm —–�

�script type�“text/javascript”�

�!—–
document.write(“The coin has landed on “);
var fltRandomNumber � Math.random();
if(fltRandomNumber � 0.5)
{

document.write(“ Heads!”);
}
else
{

document.write(“ Tails!”);
}

// —–�

�/script�

6.8 CONTROL STRUCTURES 175

Logical operatorsTABLE 6.5

Operator Meaning Example

&& AND if(intAge � 4 && intAge � 16)
|| OR if(intTimeElapsed � 60 || booStopped �� true)
! NOT if(!booFormValidated)

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 175

176 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

Figure 6.11 shows one of the two possible outcomes from running this script.

‘while’ loops

A ‘while’ loop can be used to write code that repeats while a given condition is true. The
condition is shown in parentheses after the ‘while’ reserved word:

while(intNum �� 10)
{

// code here
}

In the next example a while loop is used to simulate the throwing of a dice, again using
the Math.random method to generate a pseudo-random floating point number. To get
a random integer in the range 1 to 6, we first multiply the result of the Math.random
method by 6, which will give us a floating point number in the range 0 to 6 (but not
 including exactly 6). To turn that floating point number into an integer, the ‘floor’ method
is used, which simply truncates the number by removing any values after the decimal
point, giving us an integer. The predictable behaviour of ‘floor’ gives us a more ‘random’
number than using ‘round’. Finally, this is then incremented by 1 to give an integer
 number in the range 1 to 6. The ‘while’ loop repeats until the simulated dice ‘throws’ a 6.

�!—– File: Example6–11.htm —–�

�script type�“text/javascript”�

�!—–
var intDieValue�Math.floor(Math.random()*6);
intDieValue��;
while(intDieValue !�6)
{

document.write(“You threw a “ � intDieValue � “�br/�”);
intDieValue�Math.floor(Math.random()*6);
intDieValue��;

}
document.write

(“You threw a “ � intDieValue � “ — game over! �br/�”);
// —–�

�/script�

Figure 6.12 shows one possible output from running this script.

One of the two possible outcomes from a script that simulates the
tossing of a coin

FIGURE 6.11

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 176

6

‘for’ loops

A ‘for’ loop is very similar to a ‘while’ loop, because it repeats while a condition remains
true. However it also has two other elements, an initialisation section that can be used to
set the initial value of variables used in the loop, and a section that can be used at the end
of each loop to change the value of a variable:

for(initialise; condition; increment)
{

// code here
}

A typical ‘for’ loop will initialise a variable at the beginning, use that variable as its
 conditional value, and increment (or decrement) the value of the variable at the end
of each iteration.

In the next script we generate a times table. The ‘for’ loop is used to initialise the
 multiplier for the times table (at 1), provide the ‘while’ condition (while the multiplier is
less than or equal to twelve) and the increment (incrementing the multiplier by 1). The
value for the times table is generated by a random number in the range 1 to 12.

�!—– File: Example6–12.htm —–�

�script type�“text/javascript”�

�!—–
var intRandomInteger�Math.floor(Math.random()*12);
intRandomInteger��;
document.write(intRandomInteger � “ times table �br/�”);
for(var intMultiplier�1; intMultiplier ��12; intMultiplier��)
{

document.writeln(intMultiplier � “ x “ � intRandomInteger � “ � “ �

intMultiplier * intRandomInteger);
document.writeln(“�br/�”);

}
// —–�

�/script�

6.8 CONTROL STRUCTURES 177

One example of output from a script that simulates the throwing of a
die using a ‘while’ loop

FIGURE 6.12

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 177

178 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

Figure 6.13 shows one of the possible outcomes from this script, generating a
times table.

Writing functions

So far all our JavaScript code has been written in scripts in the body or head elements,
which execute when the document is loaded. However you can also write your JavaScript
code inside functions, and then call these functions from a script element somewhere else
in your page. The same function can also be called from more than one place in the same
page if necessary. Functions can be written inside script elements in the head or body of an
HTML document, as we have already done with our previous scripts, but may also be
 written in a separate file. The main advantage of writing functions in separate files is that
they can be re-used by scripts in different web pages. Files that contain JavaScript
 functions are normally given a ‘.js’ file extension.

Regardless of where they are written, functions are not invoked automatically, even if they
appear in the body of the document, so they have to be called by some other script or
 triggered by some kind of event.

A JavaScript function is declared simply by using the key word ‘function’, followed by
the name of the function and any parameters, in parentheses. The body of the function is
surrounded by braces:

�script type�“text/javascript”�

function functionname(parameters)
{
}
�/script�

6.9

One possible output from a script that generates times tablesFIGURE 6.13

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 178

6

A function may return a value, representing the end result of the function, using the
reserved word ‘return’ followed by the variable or value that is being returned:

�script type�“text/javascript”�

function functionname(parameters) {
. . .

return value
}
�/script�

If it is included, the line that returns the value is normally the last line in the function. This
is because nothing after a return statement is executed; the function terminates at that
point. This behaviour can also be used to deliberately ‘short circuit’ a function in cases
where we want to exit from the function before executing all the code, perhaps because of
some error condition or because we already have the result we need.

The following script shows a simple function that uses the same array of day names that
we saw in an earlier script example. The difference is that instead of writing the day name
out to the document, the function returns the name of the day.

�script type�“text/javascript”�

�!—–
function getDayName()
{

var date�new Date();
var arrDayNames�[“Sunday”,”Monday”,”Tuesday”,”Wednesday”,

“Thursday”,”Friday”, “Saturday”];
return arrDayNames[date.getDay()]

}
// —–�

�/script�

Defining functions outside the body element

So far, we have been embedding our scripts into the body of the document,
which means that the JavaScript will run as soon as the page is loaded. However,
once we start using functions, we can put them into the head element of the
 document or outside the document altogether, and invoke them from another script
or an event.

In the following example, we see how a function (in this case added to the head of the
 document) can be invoked from a script in the body of the document. Because the script
in the body is invoked when the document is loaded, the function is called at the same
time. A JavaScript function is called simply by using its name and passing any required
parameters. Unlike an object method, there is nothing that needs to precede the name of
the function. If the function returns a value, it can be used by the code that invokes the
function. In this XHTML page, a script invokes the ‘getDayName’ function. There are no
parameter values to be passed, but the string that is returned from the function is written
out to the document.

6.9 WRITING FUNCTIONS 179

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 179

180 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

6

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript day name function�/title�

�script type�“text/javascript”�

�!—–
function getDayName()
{

var date�new Date();
var arrDayNames�

[“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,
“Saturday”];

return arrDayNames[date.getDay()]
}

// —–�

�/script�

�/head�

�body�

�!—– File: Example6–13.htm —–�

�script type �“text/javascript”�

�! —–
document.write(getDayName());

// —–�

�/script�

�/body�

�/html�

Figure 6.14 shows the result of loading the page on a Thursday.

Using external JavaScript files

In all of the examples, we have seen so far, the JavaScript has appeared in the HTML source
file. However, if we want to reuse any of our JavaScript functions then they need to be

A web page displaying the current day using the ‘getDayName’
function

FIGURE 6.14

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 180

6

stored separately from HTML pages. In the previous example, we used a function called
‘getDayName’. Simple as it is, this function might be reusable in multiple pages, so instead
of putting it into the HTML document’s header, we could put it into a separate file. Files
that contain JavaScript code are usually given a ‘.js’ extension, so in this example we assume
a file called ‘dayname.js’. Note that when JavaScript is stored separately from the XHTML
source file, there is no ‘script’ element, just the JavaScript source code. The script element
remains in the web page to specify the file that contains the JavaScript function.

// File: dayname.js
function getDayName()
{

var date�new Date();
var arrDayNames�

[“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,
“Saturday”];
return arrDayNames[date.getDay()]

}

To use functions defined in external files, the script element needs to include the ‘src’
attribute, which specifies the path and filename of the JavaScript source file

�script type�“text/javascript” src�“path/filename.js”��/script�

It is important to note that the script element is never an empty element, in other words
it always has separate opening and closing tags, even though nothing appears between
them. This is necessary because some browsers cannot process the script element unless it
has both start and end tags.

Here is an XHTML page that uses the ‘getDayName’ function by referencing the external
JavaScript file using the script element’s ‘src’ attribute.

�?xml version � “1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript day name function�/title�

�script type�“text/javascript” src�“dayname.js”�

�/script�

�/head�

�body�

�script type�“text/javascript”�

�!—–
document.write(getDayName());

// —–�

�/script�

�/body�

�/html�

6.9 WRITING FUNCTIONS 181

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 181

6

Exercises

6.1 One of the browser properties that can be set is the status of the window. Add a line
to ‘Example6–1.htm’ to set the window status text to ‘status bar’. (Note that some
browsers, such as Mozilla Firefox, will not let scripts change this property until you
enable it in your browser preferences.)

6.2 Write a script that uses either a ‘for’ or a ‘while’ loop to create a table showing the
numbers from 1 to 10 and their squares (see Figure 6.15).

You will need to put all of the code that creates the table inside the script, because
if you put some of the table tags outside the script the page will not be valid
XHTML. Use a style sheet to display the table and cell borders.

6.3 Write a script that generates and displays a ‘hand’ of five cards from a potential pack
of 52 (this script could be used as part of a larger card-game application). JavaScript’s
loose typing is quite useful here, because we can create an array that contains the
names and numbers of playing cards. In your script, first create an array that contains
these names and numbers:

‘Ace’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’Jack’,’Queen’,’King’

Then create a second array containing the four suits:

‘Hearts’,’Diamonds’,’Clubs’,’Spades’

Use a ‘for’ loop that iterates five times (for five cards). In each iteration, use the
‘Math.Random()’ method to get a name or number and a suit from the arrays and
 display the resulting card on the screen. The final output might look something like
Figure 6.16.

182 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

A table of the numbers from 1 to 10 and their squaresFIGURE 6.15

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 182

6

EXERCISES 183

A possible output from the hand of cards scriptFIGURE 6.16

6.4 This exercise is quite complex and involves many steps, but provides practice with
the arithmetic operators and should give you a deeper understanding of Date objects.

Write a script that creates a table of the current time in different parts of the world.
You can do this by creating a Date object to get the current time, converting it
to UTC, and then adding or subtracting the time differences for different places
(we will not, however, concern ourselves with daylight saving, so the results may
not be completely accurate). Table 6.6 shows some example time zones with their
difference from UTC in hours. A more complete table can be found at http://
setiathome.berkeley.edu/utc.php.

The names of the time zones can be stored in an array, and the current times in each
zone generated by simple arithmetic on the millisecond value of the Date. Here is an
XHTML page you can use to call your function. Note that the page assumes the
 function is called ‘showTimeZones’ and is in a file called ‘timezones.js’.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

Some time zones and their difference from UTC in hoursTABLE 6.6

Time Zone Difference from UTC in Hours

Eastern Standard �5
Pacific standard �8
UTC 0
Central European �1
Baghdad �3
Japan Standard �9
West Australian Standard �10
New Zealand Standard �12

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 183

6

�head�

�meta http-equiv � “Content-Script-Type” content � “text/javascript”/�

�title�International Time Zones�/title�

�script type � “text/javascript” src � “timezones.js”�

�/script�

�/head�

�body�

�!–— File: exercise6–2.htm –—�

�script type � “text/javascript”�

showTimeZones();
�/script�

�/body�

�/html�

Here are the steps your function should go through:

1 Create an array of time zones.

2 Create an array of the time offsets of these zones.

3 Create a new Date object. This will contain the date and time in the current locale
(which may not be UTC).

4 Use the ‘getTime()’ method to get the current date and time as a value in
milliseconds to make it easy to change by arithmetic.

5 Find out the difference between the current locale and UTC in minutes by using the
‘getTimezoneOffset’ method.

6 Convert the time in the current locale (in milliseconds) to UTC by adding the offset
between them. There are 60,000 milliseconds in a minute, so you need to multiply the
offset value by 60,000 before adding it to the millisecond value of the current time.

7 Write out the necessary tags to begin a table, something like this:

document.write(“�table��tr��th�Time Zone�/th��th�Offsets from
UTC�/th��th�Current Date and Time�/th��/tr�”);

8 Start a ‘for’ loop to go through each zone in turn (use the ‘length’ property of the
time zone array to control the loop).

9 For each time zone, work out the difference from UTC in milliseconds. There are
3,600,000 milliseconds in each hour, so multiply that by the number of hours in the
offset (stored in the array) for the current zone.

10 Work out the time for the current zone (in milliseconds) by adding the offset to
the UTC time.

11 Create a new Date object using the adjusted millisecond value (you can create a new
Date by passing the millisecond value as a parameter to the constructor).

12 Write the next row of the table (you need to include the HTML tags for the table
row and cells.) The code might look something like this:

document.write(“�tr��td�” � arrTimeZones[i] � “�/td��td�” �

arrOffsets[i] � “�td�” � zoneDate.toLocaleString() � “�/td��/tr�”);

13 Close the ‘table’ element.

184 CHAPTER 6 INTRODUCTION TO JAVASCRIPT

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 184

6

References and further reading

Raggett, D., Le Hors, A. and Jacobs, I. 1999. HTML 4.01 specification, Section 18, ‘Scripts’.
http://www.w3.org/TR/html4/interact/scripts.html

REFERENCES AND FURTHER READING 185

In this chapter, we introduced the main features of JavaScript syntax, including
 interacting with parts of the document object model (DOM); declaring variables, arrays
and objects; performing arithmetic; concatenating strings; expressing conditions and
 controlling loops. We saw how it is possible to use the language to create client-side
processes that can integrate small programs into the browser environment. We used a
number of JavaScript object methods to, for example, generate random numbers and
access date and time information. We looked at various ways of adding JavaScript code
to a web page, including in the body or the head of a document or in a separate ‘.js’ file,
which makes it possible to reuse the same code, encapsulated in JavaScript functions, in
different pages. Table 6.7 provides a summary of the JavaScript keywords, JavaScript
object types and built-in objects that were introduced in this chapter. In the next
 chapter, we build on these foundations to see how JavaScript can be used in conjunction
with the DOM, style sheets, and server-side processes to make the web client more
interactive and dynamic.

SUMMARY

JavaScript keywords, types and objects introduced in this chapterTABLE 6.7

Keywords Object Types Built-In Objects

new Date document
var String window
function Math navigator
if location
else
while
for
return
true
false

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 185

Stobart-06.qxp:Stobart-06 11/7/07 5:46 PM Page 186

187

CHAPTER 7

Interactive JavaScript: Dynamic HTML,
Client-side Validation and Ajax

LEARNING OBJECTIVES

● To know the various components of Dynamic HTML (DHTML) and how
they work together

● To understand how to navigate the document object model (DOM) using
JavaScript

● To be able to use events to trigger JavaScript functions

● To understand the principles and practices of client-side form validation

● To be able to make connections to a server using Asynchronous JavaScript
and XML (Ajax)

In Chapter 6 we saw how JavaScript could be used to write simple scripts and functions that run
inside the client browser. This JavaScript code can be used to implement client-side processes such
as calculating values, manipulating strings of data and interacting with objects from the document
object model (DOM). In this chapter, we see how JavaScript, along with the DOM and style
sheets, can be used to create Dynamic HTML (DHTML) pages that provide a more interactive
experience for the user by responding to events in the browser and dynamically modifying the
page or browser presentation. We will also see how JavaScript can contribute to the interaction
between client and server by concentrating on two particular types of JavaScript programming.
First, we will see how JavaScript can be used for simple (‘surface’) form validation. In this role,
JavaScript can relieve the load on the server by passing the data that users have entered into forms
through some basic ‘sanity checking’ before it is submitted to the server. Secondly, we see how
JavaScript can be used to build Ajax applications that are able to communicate behind the scenes
with the server and update pages asynchronously, without the need to replace or refresh the
whole of the current web page.

INTRODUCTION

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 187

188 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

Dynamic HTML (DHTML)

Dynamic HTML is not a specific technology but refers to using a combination of
JavaScript, the DOM and cascading style sheets (CSS) to make web pages more dynamic
and interactive. JavaScript code can be used to locate nodes of the DOM and interact with
their contents, while styles can be used to enhance the dynamic aspects of presentation,
such as showing or hiding parts of a page. The credit for ‘inventing’ DHTML is generally
given to Scott Isaacs at Microsoft, though since DHTML is not so much a technology as a
collection of techniques, perhaps ‘inventing’ is not the right term. DHTML relies on
aspects of HTML that were introduced with version 4.0, along with elements of CSS, so
it will not work on older browsers (e.g. before version 4 of Internet Explorer or Netscape
Navigator).

Navigating the DOM

To write DHTML code we need to be able to navigate through the DOM. We saw some
aspects of this early in Chapter 6, when we used the document object. The tree of nodes in
the DOM in fact begins with the document object, from which we can navigate to other
nodes, either by using unique ids (if the ‘id’ attribute has been used on element nodes) or by
traversing parts of the document tree, using an approach similar to XPath. Two ways of doing
this are to use the ‘firstChild’ property, which simply identifies the first child of the current
node, or the ‘childNodes’ property, which is accessed like an array using an index number.
However, attempting to use these methods of navigation through the DOM can be very prob-
lematic due to browser incompatibilities. A more reliable approach is to use ‘id’ attributes on
the nodes that you wish to access in your JavaScript code, and navigate to them using the
‘getElementById’ method. There is also a ‘getElementsByTagName’ method that locates all
the occurrences of a particular HTML tag. To explain how these methods work we will refer
to the following XHTML document, which has several elements with id attributes:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “–//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http–equiv�“Content-Script-Type” content�“text/javascript”/�

�title�Our Insurance�/title�

�/head�

�body�

�!—– File: example7–1.htm —–�

�div id�“heading1”�Buildings Insurance�/div�

�p id�“para1”�

You need this type of insurance to cover you in case of
�span id�“risk”�severe damage to your home�/span�

(for example fire, flood, vehicle or tree crashing into it)
as well as more everyday risks like accidentally breaking a window
�/p�

�div id�“heading2”�Contents Insurance�/div�

�p id�“para2”�

You need this type of insurance to cover
�span id�“items”�things in your house�/span�,

7.1

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 188

7

7.1 DYNAMIC HTML (DHTML) 189

such as furniture, electrical goods, carpets and curtains, against risks such
as fire, theft, water damage (due to burst pipes, etc) or accidental breakage

�/p�

�/body�

�/html�

In order to navigate to the second paragraph of this document, which has the id ‘para2’,
we can use the following expression:

document.getElementById(“para2”);

Another way of achieving the same result would be to use the appropriate tag name (in this
case ‘p’) with the getElementsByTagName method, which takes the name of an HTML tag
as a parameter (the tag name parameter is not case sensitive). This is a useful alternative
for elements that do not have ‘id’ attributes. Since the ‘getElementsByTagName’ method
will locate all instances of the specified tag, the results are indexed like an array, starting at
zero. The second paragraph therefore would have the index ‘1’ in the collection of para-
graph tags, and would be accessed like this:

document.getElementsByTagName(“p”)[1];

Interacting with nodes

Once we know how to navigate to a node using the DOM, we can interact with that node
to access its properties. Properties of nodes include the ‘nodeName’ and ‘nodeType’. These
expressions, for example, would get the ‘nodeName’ and ‘nodeType’ of the first paragraph:

document.getElementById(“para1”).nodeName;
document.getElementById(“para1”).nodeType;

In this case, the node name would be ‘p’ and the type would be ‘1’.

Elements are type 1, attributes are type 2 and text nodes are type 3.
(Knowing this can occasionally be useful for debugging purposes –
sometimes the node you are accessing is not the one you think it is!)

NOTE

We can access the contents of a text node using the ‘nodeValue’ property. Since a paragraph
is an element node and not a text node, we need to navigate to its child node to get to the
text inside it. We can access the first child node of an element by using the ‘firstChild’
property, and then get its node value, like this:

document.getElementById(“para1”).firstChild.nodeValue;

This will return the text from the opening paragraph tag to the following span tag.

As well as accessing the properties of nodes we can access attributes using the ‘getAttribute’
method, which takes an attribute name as a parameter. To access the ‘id’ attribute for the
first ‘div’ element, for example, we could use the following expression:

document.getElementById(“heading1”).getAttribute(“id”);

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 189

190 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

Displaying node types, names and values using the DOMFIGURE 7.1

If you add the following script to the body of the XHTML page previously described, you
can test out some of the expressions we have introduced in this section:

�script type�“text/javascript”�

�!—–
document.write(“Paragraph 1 is node name “ �

document.getElementById(“para1”).nodeName);
document.write(“�br /�Paragraph 1 is node type “ �

document.getElementById(“para1”).nodeType);
document.write(“�br /�The text node inside paragraph 1 is “ �

document.getElementById(“para1”).firstChild.nodeValue);
document.write(“�br /�The attribute value of the first div is “ �

document.getElementById(“heading1”).getAttribute(“id”));
// —–�

�/script�

You should be aware that if you want to navigate the DOM in your script you cannot put
the script in the head element, because it will execute before the body has loaded and the
DOM will not yet be built! Therefore this particular script needs to be in the body.

In fact, you should never put scripts in the header that write content
to the document, unless they are in functions, because they will write
their output before the document body has been loaded.

NOTE

The output from the script should include the information shown in Figure 7.1.

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 190

7

7.2 JAVASCRIPT EVENTS 191

Changing values in the DOM

As well as reading node properties, JavaScript and the DOM can be used to change the content
of parts of a document. In the next example, we are going to use a text field to display the time
by setting its value inside a script. The text field is given a unique id of ‘clock’ so that we can
access it easily using the ‘getElementById’ method. It is also set to be read only (using the ‘read-
only’ attribute), since it is only intended for display purposes and not for user input:

�input type�“text” size�“6” id�“clock” readonly�“readonly”/�

The following JavaScript function (‘showClock’) uses a newly created Date object to show
the time that the page was loaded. It uses ‘getElementById’ to locate the text field
 within the document, using its ‘id’ attribute. It then sets the ‘value’ property of the text
field (this is from the HTML part of the DOM) to a string comprising the hours and
 minutes from the Date object.

�!—– showclock.js —–�

function showClock()
{

var date�new Date();
document.getElementById(“clock”).value �

date.getHours() � “:” � date.getMinutes();
}

The following XHTML page invokes the ‘showClock’ function using a script in the body:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript clock�/title�

�script type�“text/javascript” src�“showclock.js”�

�/script�

�/head�

�body�

�!—– File: example7–2.htm —–�

�div�

�input type�“text” size�“6” id�“clock” readonly�“readonly”/�

�/div�

�script type�“text/javascript”�

showClock();
�/script�

�/body�

�/html�

Figure 7.2 shows the time displayed in a text field in a browser.

JavaScript events

So far, all our JavaScript code has been run as part of the XHTML page being loaded,
 triggered by script elements in the document body. However we do not always want

7.2

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 191

192 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

JavaScript, particularly functions, to be run only when the document loads. To give us
more control over the running of our scripts, and make our browser-based applications
more interactive, we can use various types of event to trigger the running of JavaScript
code. These events include the document being loaded in the browser (the ‘onload’ event),
the mouse moving over a component of the page (‘onmouseover’) or a button being
pressed (‘onclick’). Event handlers enable JavaScript objects and functions to respond to
these events.

The ‘onload’ event

In our next example, instead of adding a script element to the body of the document, we
will invoke the ‘showClock’ function from the ‘onload’ event, which is triggered when the
document body is loaded.

�body onload�“showClock()”�

This approach means that we can have a JavaScript function run as soon as the document
is loaded without using a script element in the document body.

The time the page was loaded displayed in a text fieldFIGURE 7.2

Note that ‘onload’ here is all in lower case. You will see examples from
other sources of this event referred to as ‘onLoad’. However, because
the event appears as an attribute of the body tag, using any upper
case letters will mean your pages are not valid XHTML.

NOTE

This script shows an XHTML page that invokes the ‘showClock’ function using the
‘onload’ event:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript clock�/title�

�script type�“text/javascript” src�“showclock.js”�

�/script�

�/head�

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 192

7

7.2 JAVASCRIPT EVENTS 193

�body onload�“showClock()”�

�! –– File: example7–3.htm –– �

�div�

�input type�“text” size�“6” id�“clock” readonly�“readonly”/�

�/div�

�/body�

�/html�

Timer events

As we saw in the previous example, using the ‘onload’ event has the same effect as triggering
a JavaScript function from a script in the document body. In the case of our clock, this is
not really very helpful, since the time will soon (in no more than a minute) be wrong. We
can, however, solve this problem using a JavaScript timer event. The ‘setTimeOut’ method
can be used to set a timer that will call a function after a given interval, specified in
 milliseconds. In this modified version of the original ‘showClock’ function (called
‘showTimer’), we add a ‘setTimeOut’ event to recursively call the ‘showTimer’ function
approximately every 1000 milliseconds (every second). To see this working more easily, the
seconds, as well as the minutes and hours, are written to the text field.

// File: showtimer.js
function showTimer()
{

var date�new Date();
document.getElementById(“clock”).value�date.getHours() � “:” �

date.getMinutes() � “:” � date.getSeconds();
setTimeout(“showTimer()”, 1000);

}

The page to call this function only needs to be modified in two places, first to call the new
function in the header, and second to call the new function with the ‘onload’ event.
Therefore the only changes are to the name of the ‘.js’ file being used and the name of the
function being called:

�?xml version � “1.0”?�

�!DOCTYPE html PUBLIC “–//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript clock�/title�

�script type�“text/javascript”src�“showtimer.js”�

�/script�

�/head�

�body onload�“showTimer()”�

�!—– File: example7–4.htm —–�

�div�

�input type�“text” size�“6” id�“clock” readonly�“readonly”/�

�/div�

�/body�

�/html�

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 193

194 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

Figure 7.3 shows the modified text field, with the function showing the time in hours,
 minutes and seconds.

FIGURE 7.3

innerHTML and the DOM

In the previous examples, we used a text field to display the current time. An alternative
approach to displaying content in a specific part of the browser is to write to a node of the
document. One way of doing this is to use the interfaces of the DOM, but this can be quite
complex and different browsers can react in different ways to the same scripts. Another
way is to use the ‘innerHTML’ property of HTML elements. This enables us to access text
nodes directly and update their contents.

The ‘innerHTML’ property is not part of the formal HTML DOM specification, and was
introduced by Microsoft in Internet Explorer 4 in 1997. However due to its popularity it
has been incorporated into other browsers, despite not being included in any public stan-
dard, and is therefore quite reliable in terms of cross-browser support. There has been
much debate about whether using ‘innerHTML’ is wise or not. However, it is simple to use
and has been used in many Ajax implementations. One of the objections to the use of
‘innerHTML’ is that it can be used to include structural elements (i.e. mark-up) inside the
processes of client-side scripts, which is a poor separation of concerns. It is therefore
preferable to restrict the use of ‘innerHTML’ to the manipulation of content rather than
using it to dynamically generate mark-up.

In the next example, we modify the ‘showTimer’ function to use the ‘innerHTML’ prop-
erty. The changes are relatively simple. First, we replace the text input field with a suitable
document node, in this case a simple ‘div’ element that contains no text.

�div id�“clock”��/div�

Then all we have to do in the JavaScript function is modify the ‘div’ element, accessed
using the ‘getElementById’ method, by setting the value of its ‘innerHTML’ property:

// File: showinnertimer.js
function showTimer()
{

var date�new Date();
document.getElementById(“clock”).innerHTML�date.getHours() � “:” �

The text field showing the time in hours, minutes and secondsFIGURE 7.3

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 194

7

7.2 JAVASCRIPT EVENTS 195

date.getMinutes() � “:” � date.getSeconds();
setTimeout(“showTimer()”, 1000);

}

Otherwise everything looks, and works, pretty much the same as before, except that the
time appears in the browser simply as text, and not in a text field component. Here is the
full XHTML page, with the ‘div’ element used by the function.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript clock�/title�

�script type�“text/javascript” src�“showinnertimer.js”�

�/script�

�/head�

�body onload�“showTimer()”�

�!–— File: example7–5.htm –—�

�div id�“clock”��/div�

�/body�

�/html�

Figure 7.4 shows the output in the browser. The time is no longer in a text field but
 simply a text node of the document.

Responding to button events

The events we have used so far, the ‘onload’ event and timer events, are not related to user
activity. However, if we want to make web pages more dynamic we need to be able to
respond to the user’s actions in the page. One way of doing this is to trigger JavaScript
functions with user-instigated events such as buttons being pressed. HTML button compo-
nents can be linked to JavaScript functions by using their ‘onclick’ event. In our next example,
we use button events to call the window object’s ‘resizeTo’ method, which sets the browser
window to a specified width and height. The values for the width and height appear in
parentheses after the method name, separated by a comma. This example would set the
window size to 400 pixels wide and 200 pixels high:

window.resizeTo(400,200);

The current time displayed in a browser using the ‘innerHTML’ propertyFIGURE 7.4

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 195

196 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

Our next script example shows button events being used to resize the window. It also
shows how a JavaScript function can be called from more than one place in a script. The
function we use is called ‘resizeWindow’, takes two parameters for the width and the
height, and sets the size of the window accordingly:

// File: resize.js
function resizeWindow(width, height)
{

window.resizeTo(width,height);
}

In the body of the document, there are two buttons, both of which use the ‘onclick’ event
to call the ‘resizeWindow’ function. The first button (labelled ‘shrink window’) sets the
window to be 400 by 300 pixels. The second uses two properties of the screen
(‘availWidth’ and ‘availHeight’) to set the window size to the maximum available. The
‘screen’ object is a property of the window object.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “–//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript window resize�/title�

�script type�“text/javascript” src�“resize.js”�

�/script�

�/head�

�body�

�!–— File: example7–6.htm —–�

�div�

�input type�“button” onclick�“resizeWindow(400,300)”
value�“shrink window”/�

�input type�“button”
onclick�“resizeWindow(window.screen.availWidth,
window.screen.availHeight)” value�“restore window”/�

�/div�

�/body�

�/html�

Figure 7.5 shows the window in Mozilla Firefox 2 before the ‘shrink window’ button has
been pressed.

Different browsers may give you slightly different behaviours using this
function. For example, Opera 9 will only resize the window if it is
detached, not if it is part of a tabbed window.

NOTE

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 196

7

7.2 JAVASCRIPT EVENTS 197

JavaScript URLs

In the previous example we saw how button events can be used to invoke JavaScript
 functions. Another approach to triggering JavaScript code from user actions is to use
JavaScript URLs, which are preceded by a ‘javascript:’ prefix. This special protocol type
can be used anywhere that a regular URL can be used, for example in hypertext anchors
or form actions. We can follow this protocol with any JavaScript code, including function
calls. This approach works well if we want to use an anchor to trigger a script or function.
For example, this fragment of code shows an HTML anchor element where the URL is a
JavaScript function called ‘openWindow’ that takes the name of an HTML page as a
parameter:

�a href�“javascript:openWindow(‘about.htm’)”�open window�/a�

When the anchor is clicked in the browser, the ‘openWindow’ function is invoked. Here is the
‘openWindow’ function implementation, which uses the ‘open’ method of the window object.

// File: openwindow.js
function openWindow(url)
{

window.open(url);
}

Here is an XHTML page that includes the JavaScript URL, which invokes the function
when the user clicks on the hyperlink:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http–equiv�“Content–Script–Type” content�“text/javascript”/�

�title�JavaScript open window�/title�

�script type�“text/javascript” src�“openwindow.js”�

�/script�

�/head�

The window before resizing using a button ‘onclick’ eventFIGURE 7.5

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 197

198 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

�body�

�!–— File: example7–7.htm –—�

�div�

�a href�“javascript:openWindow(‘about.htm’)”�open window�/a�

�/div�

�/body�

�/html�

The effect of clicking the hyperlink in the page varies from browser to browser. In some
cases, a new window is created and in others a new tab appears. Figure 7.6 shows how
Internet Explorer 7 responds to the function, opening a new window.

Dynamic style sheets

As well as interacting with the DOM, another important feature of DHTML is the use of
style sheets to dynamically change the presentation of the document. A commonly used
example of this technique is to apply JavaScript and style sheets to show or hide parts of
a page. This technique can be used, for example, to add expandable menus to web pages.
To interact with styles inside our scripts, we can use the ‘style’ property of the elements in
the DOM to dynamically apply styles to parts of the document. The CSS style property
that we can use to show or hide parts of the page is ‘display’, which can have the value
‘block’ to make the content visible, or ‘none’ to make it invisible. The following function
uses an ‘if ’ statement to switch the display style of an element between ‘none’ and ‘block’.
In this example, ‘element’ is a variable that references an element node from the current
document, identified by its ‘id’ attribute.

7.3

The effect of the ‘openWindow’ function in Internet Explorer 7, triggered
by a JavaScript URL

FIGURE 7.6

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 198

7

7.3 DYNAMIC STYLE SHEETS 199

// File: changedisplay.js
function changeDisplay(id)
{

var element�document.getElementById(id);
if(element.style.display��‘none’)
{

element.style.display�‘block’;
}
else
{

element.style.display � ‘none’;
}

}

So far in this chapter we have looked at how we can use JavaScript to navigate to nodes in
the DOM and to access the properties of these nodes, including the ‘style’ property. We
have also looked at the use of events to trigger JavaScript functions. In the next example,
we draw all of these techniques together into a DHTML page that shows and hides parts
of a page when a JavaScript URL is clicked. The page consists of two sections with titles
‘JavaScript’ and ‘DHTML (Dynamic HTML)’ that are in anchors that use JavaScript
URLs. When either of these titles is clicked, the detail text (enclosed in ‘div’ tags with
unique ids) switches between shown and hidden. The ids of the ‘div’ elements are passed
to the ‘changeDisplay’ function in order to switch their state.

We need to be able to invoke this function in two ways. First, we need to invoke it when the
page is loaded, to set the initial state of the page, using the ‘onload’ event. To call more than
one function from the ‘onload’ event or, as in this case, to call the same function more than
once, the function calls can be put into a comma-separated list, like this:

�body onload�“changeDisplay(‘jsdetail’), changeDisplay(‘dhtmldetail’)”�

Since the display state of the two ‘div’ elements has not been set initially, the first time it is
called for a particular element, the function executes the ‘else’ block and sets the display state
to ‘none’. From that point onwards, the JavaScript URLs invoke the function when either one
of them is clicked and switches the display state. Here is one example of these two URLs:

�a href�“javascript:changeDisplay(‘jsdetail’)”�JavaScript�/a�

Note how it passes the id of one of the ‘div’ elements to the function. Here is the com-
plete XHTML page:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�DHTML show and hide�/title�

�script type�“text/javascript” src�“changedisplay.js”�

�/script�

�/head�

�body onload�“changeDisplay(‘jsdetail’), changeDisplay(‘dhtmldetail’)”�

�!—– File: example7–8.htm —–�

�div�

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 199

200 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

�a href�“javascript:changeDisplay(‘jsdetail’)”�JavaScript�/a�

�/div�

�div id�“jsdetail”�

JavaScript is a scripting language that can be run inside the browser to enable
client-side processes.

�/div�

�div�

�a href�“javascript:changeDisplay(‘dhtmldetail’)”�

DHTML (Dynamic HTML)�/a�

�/div�

�div id�“dhtmldetail”�

DHTML is a label given to techniques that use JavaScript, CSS and the DOM to make
web pages more dynamic and interactive.

�/div�

�/body�

�/html�

Figure 7.7 shows the page once it has been initially loaded into the browser, with both div
 element styles in the ‘none’ display state.

Figure 7.8 shows how the page looks if both the ‘div’ element styles are in the ‘block’ state
(i.e. visible).

The ‘div’ elements hidden by setting the display property of the style
to ‘none’

FIGURE 7.7

The ‘div’ elements made visible by setting the display property of the
style to ‘block’

FIGURE 7.8

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 200

7

7.4 CLIENT-SIDE FORM VALIDATION 201

Client-side form validation

One of the most useful roles that JavaScript can perform in a web application is client-side
 validation of the data that users enter into web page forms. We can only provide surface vali-
dation on the client. For example, we can check that a credit card number matches the correct
format for credit card numbers, or check that a particular type of card, such as a Visa card, starts
with the correct numbers for that type, but we could not actually check the validity of the
 credit card itself in the browser. That would have to be done by a server-side process. Surface
validation includes checking for empty fields, checking that selections have been made (for
example from radio buttons or drop-down lists) rather than leaving empty defaults, checking
that numeric, date, email or credit card fields contain the right types of characters, and so on.

Functions that process forms

With a normal HTML form, pressing the ‘submit’ button posts the HTTP request to the
URI defined by the form element’s ‘action’ attribute. For example, this simple form con-
tains input fields for a user ID and a password and submits to a server-side application
called ‘customerLogin’:

�form action�“customerLogin” method�“post”�

�table�

�tr�

�td��label for�“loginid”�Login Name:�/label��/td�

�td��input type�“text” id�“loginid”/��/td�

�/tr�

�tr�

�td��label for�“pword”�Password:�/label��/td�

�td��input type�“password” id�“pword”/��/td�

�/tr�

�tr�

�td��/td�

�td��input type�“submit” value�“Login”/�

�input type�“reset” value�“Clear form”/��/td�

�/tr�

�/table�

�/form�

Once the form is submitted to the server, it is too late to validate any of the form data in
the browser. Therefore, JavaScript provides us with a special ‘onsubmit’ event that lets us
invoke a function when the button is pressed, rather than submitting directly to the server.
We can use the function to validate the form and return either ‘true’ or ‘false’ depending
on whether the contents of the form are valid or not. If it returns ‘true’, then the form data
is submitted to the server-side application. If it returns ‘false’, then the submission is
 cancelled and we can give the user the opportunity to correct the data they have entered.

There are two ways that the JavaScript function can access the components of the form in
order to check their validity:

● The function can use the DOM to access the form’s components via the document object.
● The form can be passed as a parameter to the function.

7.4

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 201

202 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

As an example of the first approach, this form tag includes the ‘onsubmit’ event handler,
invoking a JavaScript method called ‘validate’ that takes no parameters

�form action�“customerLogin” method�“post” onsubmit�“return validate()”�

If a reference to the form is not passed to the function, the ‘getElementById’ method of
the DOM can be used to locate the input fields of the form, as long as they have ‘id’ attributes.
In this example, the function accesses the ‘loginid’ text field using the DOM, checking if
it is an empty field (using double speech marks with nothing in between represents an
empty string, which would be the contents of an empty text input field).

function validate()
{

if(document.getElementById(“loginid”).value��“”
. . .

In contrast, this version of the form element takes the second approach, passing the form
to the ‘validate’ method as a parameter. The form is referred to using the reserved word
‘this’, (i.e. pass this form to the function):

�form action�“customerLogin” method�“post” onsubmit�“return validate(this)”�

If a reference to the form is passed as a parameter to the function, the form controls can
be accessed as sub-elements of the parameter object. In this example, we navigate to the
same text field (‘loginid’) but via the form, rather than the document object.

function validate(loginForm)
{

if(loginForm.loginid.value��“”)
. . .

Which one of these approaches you use is up to you, but passing the form to the function
seems to be more commonly used in validation routines.

Pop-up dialogs

So far in this section we have looked at some JavaScript code that checks the state of the
components in a form, but what do we do if we want to indicate to the user that there is
a problem? We could use the technique that we have already introduced to write to the
page using the DOM, but a more common approach to indicating problems occurring in an
application is to display a pop-up dialog box. JavaScript provides three types of pop-up
 dialog, the alert, confirm and prompt dialogs. These are modal dialogs, which means that
you cannot do anything else in the browser until you have closed them. They are invoked
by using the ‘alert’, ‘confirm’ and ‘prompt’ methods of the window object.

An alert is used simply to show a message to the user. The only button on an alert is an ‘OK’
button, which makes the dialog disappear when it is clicked. Creating an alert is very simple;
we just pass the text we want to display as a parameter (in parentheses) to the alert function:

alert(“message”);

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 202

7

7.4 CLIENT-SIDE FORM VALIDATION 203

The confirm dialog is similar to the alert in that it will contain some type of message.
However it has two buttons, ‘OK’ and ‘Cancel’. If the user clicks ‘OK’, the box returns
true. If the user clicks ‘Cancel’, the box returns false.

confirm(“message”);

Unlike the other two dialogs, the prompt dialog asks the user to enter a value. As well as
a text entry field, it contains ‘OK’ and ‘Cancel’ buttons. If the user clicks ‘OK’ the box
returns the input value, but if the user clicks ‘Cancel’ the box returns null. A null value in
JavaScript means that the variable has no value.

var returnValue�prompt(“prompt text”, “default value”);

Here is a simple JavaScript function that creates all three of these dialog types in turn.
When the function is called, the dialogs appear one after the other.

// File: showdialogs.js
function showDialogs()
{

alert(“This is an alert”);
confirm(“This message wants confirmation”);
prompt(“Please enter something in the text area”, “I’m a default”);

}

Here is an XHTML page that calls this function when it loads:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�JavaScript Dialogs�/title�

�script type�“text/javascript” src�“showdialogs.js”�

�/script�

�/head�

�body onload�“showDialogs()”�

�!—– File: example7–9.htm –—�

�/body�

�/html�

Figure 7.9 shows how the three dialogs look when displayed by the Mozilla Firefox 2
browser. They look a little different in other browsers but the content and buttons are very
much the same.

Using dialogs in validation routines

All three of these dialog types could be used in validation routines. However, perhaps the
simplest approach is to use an alert to inform the user if there errors in the form data.

Here is a complete ‘validate’ function, using a form parameter and an alert. The function
checks if either the username or password text fields in the login form are empty. In each

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 203

204 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

case, the value of the text field is compared to an empty string (“”). If the field is empty,
some error text is added to the ‘strErrorMessage’ variable and the value of the ‘booValid’
variable is set to ‘false’. After both fields have been checked, if the ‘booValid’ variable is
‘false’ then an alert is displayed showing the error messages, and the form is not submitted,
as the method itself returns ‘false’.

// File: validateform.js
function validate(loginForm)
{

var booValid�true;
var strErrorMessage�“”;
if(loginForm.loginid.value��“”)
{

strErrorMessage ��“user name field cannot be empty\n”;
booValid�false;

}
if(loginForm.pword.value��“”)

The three types of JavaScript dialog as they appear in Mozilla Firefox 2FIGURE 7.9

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 204

7

7.4 CLIENT-SIDE FORM VALIDATION 205

{
strErrorMessage ��“password field cannot be empty”;
booValid�false;

}
if(!booValid)
{

alert(strErrorMessage);
}
return booValid;

}

Here is an XHTML page that calls the ‘validate’ function using the ‘onsubmit’ event of
the form:

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Customer Login�/title�

�script type�“text/javascript” src�“validateform.js”�

�/script�

�/head�

�body�

�!—– File: example7–10.htm —–�

�form action�“customerLogin” method�“post”
onsubmit�“return validate(this)”�

�table�

�tr�

�td��label for�“loginid”�Login Name:�/label��/td�

�td��input type�“text” id�“loginid”��/td�

�/tr�

�tr�

�td��label for�“pword”�Password:�/label��/td�

�td��input type�“password” id�“pword”��/td�

�/tr�

�tr�

�td��/td�

�td��input type�“submit” value�“Login”�

�input type�“reset” value�“Clear form”�

�/td�

�/tr�

�/table�

�/form�

�/body�

�/html�

Figure 7.10 shows both the form and the alert that appears if both of the fields are empty.
If only one field is empty, then only one message appears in the alert. If both fields have
some content then the form data is submitted to the server.

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 205

206 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

Validating other types of form component

In addition to checking if text fields contain characters, a common process for mandatory
fields, we can do other types of check. For example we can see if the user has made a selec-
tion from a select list, or see if a radio button or check box has been checked.

It is useful to add an empty option to a ‘select’ component to confirm that the user has
made a choice. If they accept the default (i.e. nothing selected) then we can flag that as an
error using the JavaScript validation function. In this select, for example, the first option
is empty. This means we can ensure that the user specifically chooses either ‘Administrator’
or ‘User’ from the list by validating that the zero-indexed selection (the empty one) has
not been selected.

�select id�“loginoptions” size�“1”�

�option��/option�

�option�Administrator�/option�

�option�User�/option�

�/select�

In our JavaScript validation function, we can check the index of the selected option using
the ‘selectedIndex’ property. If the index is zero then we can do some error notification.

if(loginForm.loginoptions.selectedIndex �� 0)
{

strErrorMessage �� “you must select your Login role\n”;
booValid�false;

}

The form and the alert that appears if both fields are left empty,
 running in Internet Explorer 7

FIGURE 7.10

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 206

7

7.4 CLIENT-SIDE FORM VALIDATION 207

In this example, we have radio buttons in the form.

�input type�“radio” name�“action” value�“view”/� View settings
�input type�“radio” name�“action” value�“update”/� Update settings

By not providing a default checked button, we can force the user to select one of these
 buttons specifically, and again check that they have done so using JavaScript validation. In
this part of the ‘validate’ function, we see if the ‘checked’ property of both of the radio
buttons is false. If neither button is checked, we flag an error.

if((!loginForm.action[0].checked) && (!loginForm.action[1].checked))
{

strErrorMessage ��“You must select View or Update settings\n”;
booValid�false;

}

Another possible form of validation is to check that different choices made within the same
form are consistent with one another, for example in our login form it may be that only
administrators are able to update the settings. This means that anyone attempting to log on
as a user, but also selecting the ‘change settings’ radio button would be making an invalid
choice. In this part of the ‘validate’ method, we combine these conditions together.

if((loginForm.action[1].checked) &&
(loginForm.loginoptions.selectedIndex !�1))
{

strErrorMessage ��

“You cannot update settings unless you are an administrator\n”;
booValid�false;

}

Here is the complete ‘validate’ function (in a different file to separate it from the previous
version).

// File: validateloginform.js
function validate(loginForm)
{

var booValid � true;
var strErrorMessage � “”;
if(loginForm.loginid.value �� “”)
{

strErrorMessage �� “user name field cannot be empty\n”;
booValid�false;

}
if(loginForm.pword.value �� “”)
{

strErrorMessage �� “password field cannot be empty\n”;
booValid�false;

}
if(loginForm.loginoptions.selectedIndex �� 0)
{

strErrorMessage �� “you must select your Login role\n”;
booValid�false;

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 207

208 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

}
if((!loginForm.action[0].checked) && (!loginForm.action[1].checked))
{

strErrorMessage �� “You must select View or Update settings\n”;
booValid�false;

}
if((loginForm.action[1].checked) &&
(loginForm.loginoptions.selectedIndex !� 1))
{

strErrorMessage �� “You cannot update settings unless you are
an administrator\n”;
booValid�false;

}
if(!booValid)
{

alert(strErrorMessage);
}

return booValid;
}

The following XHTML page contains the various form components that are validated by
the JavaScript ‘validate’ function.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Customer Login�/title�

�script type�“text/javascript” src�“validateloginform.js”�

�/script�

�/head�

�body�

�!—– File: example7–11.htm –—�

�form action�“customerlogin” method�“post”
onsubmit�“return validate(this)”�

�table�

�tr�

�td��label for�“loginid”�Login Name:�/label��/td�

�td��input type�“text” id�“loginid”/��/td�

�/tr�

�tr�

�td��label for�“pword”�Password:�/label��/td�

�td��input type�“password” id�“pword”/��/td�

�/tr�

�tr�

�td��label for�“loginoptions”�Select Login role:�/label��/td�

�td��select id�“loginoptions” size�“1”�

�option��/option�

�option�Administrator�/option�

�option�User�/option�

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 208

7

7.4 CLIENT-SIDE FORM VALIDATION 209

�/select�

�/td�

�/tr�

�tr�

�td�Select Action:�/td�

�td�

�input type�“radio” name�“action” value�“view”/� View settings
�input type�“radio” name�“action” value�“update”/� Update

settings
�/td�

�/tr�

�tr�

�td��/td�

�td��input type � “submit” value � “Login”/�

�input type � “reset” value � “Clear form”/�

�/td�

�/tr�

�/table�

�/form�

�/body�

�/html�

Figure 7.11 shows what the alert looks like if a user name and password has been entered
but the user has attempted to log in as a user (rather than an administrator) and selected
‘update’ settings.

An alert displayed by the ‘validate’ function that cross-references two
of the controls in the form

FIGURE 7.11

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 209

210 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

The emergence of Ajax

One of the big talking points around web application development in 2005 was the
 emergence of Ajax as a way of bringing some aspects of the desktop application experience
into browser-based applications. Ajax is not a particularly new concept, following on as it
does from a longer tradition of client-side processing that includes JavaScript, Java applets
and DHTML. However the significant difference between Ajax and previous approaches
is the concept of the ‘one-page web application’, whereby page content is updated asynchro-
nously from the server without the whole page being rebuilt. An early example of this
approach was Google Suggest, which was able to dynamically populate a search text box
with suggestions for search terms as characters were typed into it, providing, of course,
that the browser was able to support it. The most important component of an Ajax appli-
cation is the ‘XMLHttpRequest’ component, which was first introduced by Microsoft into
Outlook Web Access 2000 and later into Internet Explorer 5.0. Other browsers have since
followed with their own implementations of the ‘XMLHttpRequest’. This component
enables browser-hosted applications to send requests to the server and receive responses
without replacing or fully refreshing the current web page. Instead, the response that is
returned from the server, which may be an XML document or a simple stream of charac-
ters, can be handled by a client-side script and used to update parts of the page using the
DOM. Figure 7.12 shows the general architecture of Ajax-based systems. The key to this
 architecture is that the Ajax engine mediates between the user interface and the server,
processing on the client where possible (using DHTML) and, where necessary, sending
asynchronous HTTP requests and receiving XML data (or indeed data in any other suitable
format) that it renders in the browser via the DOM.

Equally importantly, this processing can take place asynchronously. This means that the user
does not have to wait for the server to respond in order to continue interacting with the appli-
cation. Instead, the application is able to continue serving the user while at the same time han-
dling the server response as and when it arrives. Figure 7.13 shows the general idea. User activ-
ity in the browser continues even while the Ajax engine is submitting XMLHttpRequests to
the server and waiting for responses. The Ajax engine is responsible for handling events asso-
ciated with getting back the server response but the user does not have to wait for it. Ajax
applications do not have to be asynchronous, however. In some cases it might be appropriate
to wait for the server’s response before continuing with the current process.

7.5

Ajax architecture, adapted from (Garrett 2005)FIGURE 7.12

Browser Client

User Interface

Ajax Engine

Server-Side Systems

JavaScript
Call HTML+

CSS Data

Web and/or XML Server

XMLHttpRequest

XML Data

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 210

7

7.5 THE EMERGENCE OF AJAX 211

Ajax itself is not a technology but a label, applied by Garrett (2005), to a way of building
web applications that uses the ‘XMLHttpRequest’ object within client-side scripts to
seamlessly update web pages. Garrett summarized Ajax as a combination of:

● Standards-based presentation using XHTML and CSS
● Dynamic display and interaction using the document object model
● Data interchange and manipulation using XML and eXtensible Stylesheet Language

Transformations (XSLT)
● Asynchronous data retrieval using the ‘XMLHttpRequest’
● JavaScript binding everything together

Of course the technologies listed by Garrett are not the only way to provide one-page
applications on the web; alternative technologies, such as Flash, can be used to similar
effect.

Writing Ajax code with JavaScript

There are basically two approaches to writing an Ajax application. One is to build your own
Ajax code using standard JavaScript. The other is to use some kind of API and/or develop-
ment tool that encapsulates the underlying Ajax code, for example, the Google Ajax API
(though this is just one example of many). In this chapter, we focus on using standard
JavaScript to develop relatively simple Ajax applications. However, for more complex
 systems it may be more appropriate to look at using Ajax development tools.

If you are writing Ajax applications without using a tool or framework, one of the most
important things to build is a JavaScript function that is able to acquire the appropriate
type of ‘XMLHttpRequest’ object, depending on which browser the script is running in.
The main choice to be made is between older Microsoft browsers and newer Microsoft, or
non-Microsoft, browsers. This is because Microsoft has, over time, developed different
implementations of the ‘XMLHttpRequest’ component. In earlier versions (used in

Using asynchronous communication in Ajax, adapted from (Garrett 2005)FIGURE 7.13

Client-Side
Processing in
Ajax Engine

Server-Side
Processing

input

input

input

Server-Side
Processing

Server-Side
Processing

User Activity in
Browser

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 211

212 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

Internet Explorer 5 and 6), they used an ActiveX object to implement the
‘XMLHttpRequest’ as part of Microsoft XML Core Services (MSXML), and even within
these Microsoft browser versions there are slightly different types of ActiveX objects.
However, from Internet Explorer 7.0 onwards, the implementation is based on native
scripting and works in a similar way to other browsers. Therefore in order to make sure we
get the right type of ‘XMLHttpRequest’ object in our JavaScript, we need to write a func-
tion that tries to access these different implementations in turn until it finds a match.
There are various ways of doing this, including the following simple example (Dutta 2006).
It uses properties of the window object to identify which type of ‘XMLHttpRequest’ is
available. For more recent versions of Internet Explorer and other browsers, there will be
an ‘XMLHttpRequest’ property. If this is not present, then the browser may be an older
version of Internet Explorer, in which case the window should have an ‘ActiveXObject’
property. Of course, if both of these tests return ‘false’ then the browser is not capable of
supporting Ajax.

if(window.XMLHttpRequest)
{

// If IE7, Mozilla, Safari, etc: Use native object
var xmlHttp � new XMLHttpRequest();

}
else
{

if(window.ActiveXObject)
{

// otherwise, use the ActiveX control for IE5.x and IE6
var xmlHttp � new ActiveXObject(“Microsoft.XMLHTTP”);

}
}

A slightly more detailed approach is described by (Zakas et al. 2006), which takes into
account the several different versions of the ActiveX object that have been implemented.
It also uses JavaScript exception handling as well as ‘if ’ statements. Exception handling
code uses the reserved words ‘try’ and ‘catch’. Code that may throw an exception (i.e. an
error condition) is put inside a block of code labelled with ‘try’, and code that can handle
that exception, if it occurs, is put into a following ‘catch’ block. The code in the ‘catch’
block is only executed if an exception is thrown. Otherwise only the code in the ‘try’ block
is executed. This is the basic structure of a ‘try . . . catch’ block:

try
{

// Attempt to execute some code here
}
catch(e)
{

// If it throws an exception, handle it here
}

Here is an ‘if ’ statement (as part of a function) that also includes a ‘try . . . catch’ block.
It attempts to create an ‘XMLHttpRequest’ object and return it to the caller of the func-
tion, but if this fails, an exception is thrown, which is handled by the catch block. In this
case, we do not do anything other than allow the code to continue executing, because the

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 212

7

7.5 THE EMERGENCE OF AJAX 213

next step is to look for the correct type of ActiveX object.

if(window.XMLHttpRequest)
{

// If IE7, Mozilla, Safari, etc: Use native object
try
{

xhrequest � new XMLHttpRequest();
return xhrequest;

}
catch(exception)
{

// OK, just carry on looking
}

}

There are five different versions of the ActiveX object that we may be able to identify in
some versions of Internet Explorer. A useful way of checking for each of them is to put their
various names into an array and then iterate through them using a ‘for’ loop until a match is
found. The array needs to contain the names of the various objects starting with the most
recent, because the more recent ActiveX components are likely to perform better than the
older ones. Here is an array containing the relevant names of the various ActiveX objects:

var IEControls � [“MSXML2.XMLHttp.5.0”, “MSXML2.XMLHttp.4.0”, “MSXML2.XMLHttp.3.0”,
“MSXML2.XMLHttp”, “Microsoft.XMLHttp”];

Here is a complete function, ‘getXMLHttpRequest’, which uses the various techniques and
methods that we have introduced:

function getXMLHttpRequest()
{

var xhrequest � null;
if(window.XMLHttpRequest)
{
// If IE7, Mozilla, Safari, etc: Use native object
try
{

xhrequest � new XMLHttpRequest();
return xhrequest;

}
catch(exception)
{

// OK, just carry on looking
}

}
else if(window.ActiveXObject)

{
// . . . otherwise, use the ActiveX control for IE5.x and IE6

var IEControls�[“MSXML2.XMLHttp.5.0”, “MSXML2.XMLHttp.4.0”,
“MSXML2.XMLHttp.3.0”, “MSXML2.XMLHttp”, “Microsoft.XMLHttp”];

for(var i�0; i � IEControls.length; i��)

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 213

214 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

{
try
{

xhrequest � new ActiveXObject(IEControls[i]);
return xhrequest;

}
catch(exception)
{
// OK, just carry on looking
}

}
}
// if we got here we didn’t find any matches
throw new Error(“Cannot create an XMLHttpRequest”);
}

}

Once we have an ‘XMLHttpRequest’ object, we can open a connection to a server URL
with it, using the ‘open’ method. This takes at least three parameters (it can take more, if
a username and password are required for the connection). The first is the HTTP method
for the connection (usually ‘GET’ or ‘POST’), the second is the URL of the server-side
application that we want to connect to, and the third parameter is a Boolean value that
specifies if we want to make an asynchronous (true) or a synchronous (false) connection.
Since one of the basic concepts behind Ajax is that we make asynchronous connections,
the third parameter would normally be set to ‘true’, unless there was a good reason for
waiting for the response before continuing.

xhrequest.open(“GET”, url, true);

The URL string comprises the name of the server-side program that will deal with the
request. In many cases, where the request type is ‘GET’, it also includes request parame-
ters from the current page.

Once the connection to the server has been made, we have to have some way of knowing
when, and if, a successful response has been received from the server.

Perhaps the most important aspect therefore of the ‘XMLHttpRequest’ object is its
‘onreadystatechange’ event, which is triggered when the request changes state. We can
respond to this state change by assigning the name of a function to the event, so that the
function is called when there is a state change.

xhrequest.onreadystatechange � nameoffunction;

It is important to note that the name of the function that is associated with the
‘onreadystatechange’ is not followed by parentheses in this line of code. Parentheses are
only used if the function is anonymous, and declared in-line, in other words the function
definition appears as part of the same statement, like this:

xhrequest.onreadystatechange � function()
{

// body of in-line function here
};

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 214

7

7.5 THE EMERGENCE OF AJAX 215

Note the use of the reserved word ‘function’, and the semicolon at the end of the closing
brace. In our first example, we use a function that is declared separately, called
‘processResponse’, so the assignment of the function name looks like this:

xhrequest.onreadystatechange � processResponse;

There are five possible states that the request can be in:

0 � uninitialized
1 � loading
2 � loaded
3 � interactive
4 � complete

The ‘onreadystatechange’ event is triggered every time the state changes, which means that
our function is called several times as it works though the various stages from 0 to 4.
However we do not usually want to respond to these events until the state has reached 4
(complete), at which point we have successfully received a server response and can process
it accordingly. The function associated with the ‘onreadystatechange’ event has to be writ-
ten to check the state before it continues processing and handle any problems. Even if we
got a response back, it may not be the one we were expecting, for example we may get an
HTTP response code back that is something other than 200 (the ‘OK’ response.) Therefore
we also need to check that the response is OK before attempting to process it. Here is
an outline of a function that checks the status of the ‘XMLHttpRequest’ and the HTTP
status code.

function processResponse()
{

if(xhrequest.readyState �� 4 && xhrequest.status �� 200)
{

// now we can do something with the response
}

}

Once everything else is in place, we need to open a connection to the server using the
‘open’ method (as we have already described) and then send our request using the ‘send’
method, which may simply send the request or also send some data, perhaps as a string of
data to be posted to the server (this may be necessary if we are not appending query
parameters to the URL as a get request) or it may be an XML document. If we are not
sending either of these data items then the parameter value can be set to null.

xhrequest.send(null);

Once the request has been sent to the server, and there is a function able to respond to the
‘onreadystatechange’ event, the next step is to be able to process the response. Depending
on how the server-side implementation works, the data that comes back as a response
could be either a simple string of data or an XML document. If the response is string data,
then the appropriate property to use to handle it is ‘responseText’. If the response is in the
form of an XML document, then the appropriate property to use is ‘responseXML’.

Tables 7.1 and 7.2 summarize the properties and methods of the ‘XMLHttpRequest’ object.

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 215

216 CHAPTER 7 INTERACTIVE JAVASCRIPT

7
Using Ajax and RSS

Later in this book, we see how to build Ajax applications where we connect from our
JavaScript client to our own server-side applications. However, as a first example, we see
how to create an Ajax application that connects to server-side data sources that are avail-
able from web sites in the public domain. There are many types of data on the web that
we could potentially connect to using an Ajax application, but one of the simplest would
be an RSS feed. RSS feeds were first introduced in 1999 and have become increasingly
popular. During this time, increasing standardisation has been applied to try to ensure
interoperability. RSS is an acronym that has some confused roots, standing variously for
Really Simple Syndication, Rich Site Summary or RDF Site Summary. However they all

‘XMLHttpRequest’ object methodsTABLE 7.2

Method Description

abort() Aborts the current request
getAllResponseHeaders() Returns all headers (names and values) as a single string
getResponseHeader (headerName) Returns the value of the specified header
open (method, URL, asyncFlag,
username, password) Opens a connection and retrieves a response from the

specified URL. The method is usually either GET or POST;
optionally, there can be a username and password for
secure sites

send (content) Sends the request to the server (can include data as a
string or DOM object if it is a post request)

setRequestHeader(name, value) Assigns the given value to the named header

‘XMLHttpRequest’ object propertiesTABLE 7.1

Property Description

onreadystatechange Event handler for an event that fires at every change in
the readyState

readyState The status of the request, which can be in the following
states:
0 � uninitialized
1 � loading
2 � loaded
3 � interactive
4 � complete

responseText Data returned from the server as a string
responseXML Data returned from the server as an XML document
status HTTP status code, for example 200 (OK), 404 (not found)
statusText Message string describing the status code

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 216

7

7.5 THE EMERGENCE OF AJAX 217

have much the same intent: to provide a way of aggregating frequently updated content
into web applications so that content can be syndicated. Increasingly, the standard ‘feed’
icon is becoming used across web applications to indicate the availability of RSS content
(Figure 7.14).

The format of an RSS feed is basically a simple XML document that has a root element
called ‘rss’. Inside this element is a single ‘channel’ element, which describes the content
of the channel and contains a series of item elements. Here are some of the main elements
in RSS version 2.0 documents.

�?xml version�“1.0”?�

�rss version�“2.0”�

�channel�

�title�. . .�/title�

�link�. . .�/link�

�description�. . .�/description�

. . .
�item�

�title�. . .�/title�

�link�. . .�/link�

�description�. . .�/description�

�pubDate�. . .�/pubDate�

�guid�. . .�/guid�

�/item�

�item�

. . .
�/item�

�/channel�

�/rss�

Security issues with the ‘XMLHttpRequest’

One of the security issues with the ‘XMLHttpRequest’ is that browsers guard against cross
domain requests, meaning that they either warn against, or disallow, any attempt to send
an ‘XMLHttpRequest’ to a domain other than the one that the web page came from. This
means, in fact, that using the ‘XMLHttpRequest’ as part of an RSS reader is perhaps not
an ideal solution, since we then have to start looking into issues such as signing our scripts
with security certificates. When we are connecting to our own test server this is not going

The standard RSS feed iconFIGURE 7.14

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 217

218 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

to cause any problems, because we either create our own RSS feeds or use our server as a
proxy between the browser and the original source of the RSS feed. Unfortunately, how-
ever, the security restrictions also apply to HTML pages that are loaded as local files. In
order to test the Ajax examples in this chapter as local files, we have had to use Internet
Explorer 7.0, because there are some browsers (for example, Firefox and Opera) that do
not allow you to access the RSS content using ‘XMLHttpRequest’. Of course, once we
start to deploy our own web applications, this will no longer be an issue.

Connecting to a server using an ‘XMLHttpRequest’

Because there are a number of different aspects to using Ajax, our first example simply
tries to make a connection to a server using an ‘XMLHttpRequest’ and shows an alert if
the connection is successful. The following function (‘processResponse’) simply checks
that the ready state of the request is ‘4’ and the HTTP status code is ‘200’ (OK). If so, an
alert is shown. The ‘xhrequest’ variable shown here is declared elsewhere as a global
 variable:

// File: processresponse.js
function processResponse()
{

if(xhrequest.readyState �� 4 && xhrequest.status �� 200)
{

alert(“Got Response!”);
}

}

Here is an XHTML page that uses the ‘getXMLHttpRequest’ function (in ‘getxmlhttpre-
quest.js’) to get hold of an ‘XMLHttpRequest’ object. If it is successful, it uses the
‘processResponse’ function (in ‘processresponse.js’) to show the alert. The two functions
are in separate files because the ‘getXMLHttpRequest’ function is generic and can be
reused across many different pages, whereas the ‘processResponse’ function is specific to
this example. The URL used here is for the Yahoo RSS news feed, but since we are just
testing to see if we have made a connection, any valid URL can be used instead.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Ajax RSS Reader�/title�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“processresponse.js”�

�/script�

�/head�

�body�

�!—– File: example7–12.htm —–�

�script type�“text/javascript”�

// no ‘var’, so this is a global variable!
xhrequest � null;

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 218

7.5 THE EMERGENCE OF AJAX 219

7

try
{

xhrequest � getXMLHttpRequest();
}
catch(error)
{

document.write(“Cannot run Ajax code using this browser”);
}
if(xhrequest !� null)
{

xhrequest.onreadystatechange � processResponse
xhrequest.open(“GET”, “http://rss.news.yahoo.com/rss/topstories”, true);
xhrequest.send(null);

}
�/script�

�/body�

�/html�

Figure 7.15 shows the alert that appears if you make a successful connection using the
‘XMLHttpRequest’.

Reading XML data using the ‘XMLHttpRequest’

For our final example, we build on the code that makes an Ajax connection and retrieve
some data from an RSS feed into a web page. The first thing that we need is something on

The alert that appears if a successful connection to the server is made
using the ‘XMLHttpRequest’

FIGURE 7.15

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 219

220 CHAPTER 7 INTERACTIVE JAVASCRIPT

7

the page to display the content we are reading from the server. In our example, we use a
‘div’ with the id of ‘feed’:

�div id�“feed”��/div�

This is where we write the content to when we get the response.

The other main change that we need to make is to provide a function that does more than
just show an alert when it makes a connection. We need instead to navigate the DOM of
the RSS XML document. You will note from the structure of RSS documents that there
is a ‘description’ element inside the ‘channel’ element, and another inside each ‘item’
 element. In the following function we use the ‘getElementsByTagName’ method to get a
collection of all the description elements. Then we navigate to the first of the item descrip-
tions using the index ‘1’ (since the first index, 0, would be the channel description). We
then set the ‘innerHTML’ property of the ‘div’ to the value of the content of the element.
When we connect to the Yahoo news feed, the content is a set of anchors that link to
HTML content.

// File: processnewsfeed.js
function processYahooNewsFeed()
{

if(xhrequest.readyState �� 4 && xhrequest.status �� 200)
{

var descriptions�xhrequest.responseXML.getElementsByTagName(‘description’);
var firstItemDescription�descriptions[1];
feed.innerHTML�firstItemDescription.firstChild.nodeValue;

}
}

Here is the web page that retrieves the content and displays it. It is similar to the
last example, except that it includes the div tag and calls the ‘processYahooNewsFeed’
function.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Ajax RSS Reader�/title�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“processnewsfeed.js”�

�/script�

�/head�

�body�

�!–— File: example7–13.htm –—�

�h1�Yahoo News Feed�/h1�

�div id�“feed”��/div�

�script type�“text/javascript”�

// no ‘var’, so this is a global variable!
xhrequest�null;

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 220

7.5 THE EMERGENCE OF AJAX 221

7

try
{

xhrequest � getXMLHttpRequest();
}
catch(error)
{

document.write(“Cannot run Ajax code using this browser”);
}
if(xhrequest !� null)
{

xhrequest.onreadystatechange � processYahooNewsFeed;
xhrequest.open(“GET”, “http://rss.news.yahoo.com/rss/topstories”, true);
xhrequest.send(null);

}
�/script�

�/body�

�/html�

Figure 7.16 shows how the page looks when it has retrieved the first item from the feed.
Of course the actual content changes on a daily basis.

Part of the Yahoo news feed included in a web page using AjaxFIGURE 7.16

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 221

7

222 CHAPTER 7 INTERACTIVE JAVASCRIPT

Exercises

7.1 Using the document in ‘example7-1.htm’, write a JavaScript function (in a separate ‘.js’
file) that uses appropriate DOM properties and methods to locate the ‘span’ elements
with the ids ‘risk’ and ‘items’. Using the DOM (you can assign the values either to the
‘nodeValue’ property of the element’s ‘firstChild’ or the ‘innerHTML’ property), replace
the text in these spans with ‘domestic disaster’ and ‘your possessions’ respectively.

Invoke the function using the ‘onload’ event of the document body. The resulting
page should appear as in Figure 7.17.

7.2 Modify the validation function in the file ‘validateform.js’, which currently just
checks that the login id and password fields are not empty, to include these
 additional validations:

● Login IDs should be based on an email address, so the input must contain the ‘@’
character.

● Passwords must be at least 5 characters long, but have no more than 10 characters.

Add an appropriate message to the alert if either of these conditions is not met.

You can use the length property of strings to check the length of the password.

To check for the ‘@’ character (substring) in the login id, you can use the
‘string.indexOf()’ function. If the function returns –1, it means the substring you are
searching for is not in the string:

if(loginid.indexOf(“@”) �� -1)
{

// not there!

7.3 There is no need to write all your own validation code since there are many
JavaScript validation routines available to download on the web. Find one of these

The expected result from Question 1FIGURE 7.17

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 222

7

EXERCISES 223

and use it to validate a form containing fields such as credit card numbers, dates and
floating point numbers.

7.4 In an external file called ‘mouseover.js’, write two JavaScript functions to animate
the WebHomeCover logo by using two different versions of the logo and switching
between them when the mouse passes over the logo position. Here is an XHTML
page that includes an anchor that uses the ‘onmouseover’ and ‘onmouseout’ events to
trigger JavaScript functions.

�?xml version�“1.0”?�

�!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�meta http-equiv�“Content-Script-Type” content�“text/javascript”/�

�title�Mouse over logo�/title�

�script type�“text/javascript” src �“mouseover.js”��/script�

�/head�

�body�

�!–— File: Exercise7–4.htm —–�

�h2�WebHomeCover Logo�/h2�

�div�

�a href�“http://www.webhomecover.com” onmouseover�“mouseOver()”
onmouseout�“mouseNotOver()”�

�img src�“webhomecoverlogo.gif” alt�“WebHomeCover logo”
id�“logo”/�

�/a�

�/div�

�/body�

�/html�

You will need to implement the ‘mouseOver’ and ‘mouseNotOver’ functions. In these
functions, use the getElementByID method to navigate to the ‘logo’ (the ‘img’
 element) and set the name of the ‘src’ attribute to one of the two image file
names (one in each function). The two files (supplied on the CD) are ‘webhome
 coverlogo.gif ’ and ‘webhomecoverinverted.gif ’.

7.5 Write an Ajax function called ‘processWeatherFeed’ that accesses the first title
 element and second description element of an RSS document, concatenates them
together and writes their content to an element of an XHTML document. You can use
the URIs of various RSS weather feeds. Yahoo, for example, provides a simple RSS
URI for weather feeds where you append a ‘p’ request parameter that has the value
of a location. For example, the following URI would get the weather in London, UK.

http://weather.yahooapis.com/forecastrss?p�UKXX0085

You can find out the code for any global weather location by navigating from the main
Yahoo weather page:

http://weather.yahoo.com/

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 223

224 CHAPTER 7 INTERACTIVE JAVASCRIPT

There are other weather feeds that you can also use, for example RSSWeather.com.
Here is the URL for accessing the weather in London using their RSS feed

http://www.rssweather.com/icao/EGLC/rss.php

You will find other feeds on the web that you may be able to connect to, depending
on how they are configured. Remember that all RSSfeeds use the same XML
 document structure, so you can create a generic function that is able to read data
from any RSS feed, not just news or weather as we have done so far.

In this chapter, we built on the basics of JavaScript syntax introduced previously to
explore some aspects of DHTML, form validation and Ajax. We began the chapter by
describing some features of JavaScript that let us navigate to parts of an XHTML
 document using the DOM and dynamically change their state. We then looked at an
important aspect of JavaScript, which is client-side validation. We concluded the chap-
ter by looking at some fundamental aspects of Ajax, which uses JavaScript to
 communicate with the server and change the content of the current page without
 needing to reload it.

SUMMARY

References and further reading

Dutta, S. (2006) Native XMLHTTPRequest object. http://blogs.msdn.com/ie/archive/2006/01/
23/516393.aspx

Garrett, J.J. (2005) Ajax: A New Approach to Web Applications. http://www.adaptivepath.com/
publications/essays/archives/000385.php

Zakas, N., McPeak, J. and Fawcett, J. (2006) Professional Ajax. Wrox/Wiley 2006

7

Stobart-07.qxp:Stobart-07 11/7/07 5:45 PM Page 224

225

CHAPTER 8

Introduction to PHP

LEARNING OBJECTIVES

● Be aware of the PHP language and understand what it can be used for

● Understand that PHP can be embedded within (X)HTML documents using
tags to denote the start and end of PHP code

● Understand how it is possible to jump in and out of PHP within a docu-
ment and what the PHP parser does when it interprets a document

● Understand and be able to use the echo construct effectively

● Understand how PHP instructions should be separated

● Understand why you should comment your PHP scripts and be able to do so

● Understand the different PHP types that are supported and how to use PHP
variables

● Understand what a PHP constant and a predefined variable are and be able
to use them

● Understand what an expression is, the role of operators and operands and
operator precedence

Welcome to the PHP scripting language. In this chapter, we begin by introducing you to the PHP
language. We explain what PHP is and how it works by introducing you to your first PHP script
and show you how you can view the output that it generates within a Web browser.

We shall provide an introduction to script syntax and explain how and why it is important for you
to comment your PHP scripts carefully. We shall introduce the concept of variables and describe
how you use them. We shall examine the different types of data which a variable can store and

INTRODUCTION

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 225

226 CHAPTER 8 INTRODUCTION TO PHP

8

the differences between them. We will also examine PHP operands and operators and explain
how these go together to form expressions.

In conclusion, we cover all the basic fundamental PHP constructs and syntax you need to know
before you can start doing some of the really interesting and powerful things we cover in later
chapters. By the end of this chapter, you will be familiar with creating PHP scripts, saving them and
viewing their output using a browser of your choice. It is worthwhile pointing out that PHP is widely
supported by a large community of developers and you will find a comprehensive annotated
manual online at http://www.php.net /manual/en/ if there are some PHP language concepts we
introduce that you would like to investigate further. Anyway, we have a lot to get through, so let’s
get started.

Welcome to PHP

According to the PHP web site (www.php.net) ‘PHP is a widely-used general-purpose
scripting language that is especially suited for Web development and can be embedded into
HTML’.

PHP is a scripting language which can be combined within (X)HTML documents to enable
the creation of dynamic web systems. By doing this you can overcome one of the more seri-
ous limitation of (X)HTML documents – they are static in nature. What we mean by this

8.1

How PHP worksFIGURE 8.1

(1) User requests
 PHP documentWeb user

web server

Web server
software

HTML & PHP
web pages

PHP
Interpreter

(5) Web page

(4) Script
 output

(3) PHP page
 sent to Interpreter

(2) Server finds
 PHP web page

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 226

8.2 YOUR FIRST PHP SCRIPT 227

8

is that a standard (X)HTML document is stored on a server and, when requested,
 displayed to a user via a web browser. The document that is displayed does not change. It
might have some clever JavaScript or plug-in which provides a degree of user interaction
but it cannot change the fundamental content it contains nor interface with a database to
reflect new dynamic up-to-date content each time it is loaded. By using PHP, you can
accomplish all of these things.

PHP is a hypertext pre-processor (it’s where the name PHP comes from) which means
that it processes the hypertext document before it is served to the browser. PHP is there-
fore a server-side scripting language and all the work is done at the server before it is sent
to the client (your web browser). Figure 8.1 illustrates how PHP works.

FIGURE 8.1
If you look closely at Figure 8.1, you see that a user has requested a PHP document from
a web server. If the document had been a simple (X)HTML document, the server would
have simply sent it to the client web browser. Because the document is a PHP document,
the server passes the document to the PHP interpreter. This parses through the docu-
ment searching for any PHP commands. When it finds any it removes them and replaces
them with any output that the PHP commands generate. When it has finished parsing
the document, the resulting document with the PHP removed is sent to the user’s
browser. It sounds complex but it is easier if you see it working for yourself.

Your first PHP script

Welcome to your first PHP script, which is commonly known as a ‘hello world’ application,
as all it does is display the words ‘Hello, World’:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

�?php
echo “�p�Hello, World�/p�”;
?�

�/body�

�/html�

Okay, this does look very complicated for an introductory script but that is because we
have chosen to embed the PHP script into an (X)HTML document which conforms to the
W3C recommendations and standards. This is a very good thing to do as it ensures the
quality and consistency of web documents, but it does make things a little complex for
the beginner.

Don’t worry about understanding the script at the moment but type the script into your
chosen editor and save it as ‘example8–1.php’ in your web server directory. Exactly how
you do this depends on the editor you are using, the web server and the PHP environment

8.2

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 227

228 CHAPTER 8 INTRODUCTION TO PHP

8

you have on your computer. We shall assume that you have installed the WAMP environment
and that your web server directory is located at:

C:\wamp\www\

You may wish to create sub-directories below the ‘www’ directory in which to store your
scripts for each chapter but that is up to you. If you have saved your script as ‘example8–1.php’
in the directory above then you can view the output from the script by typing:

localhost/example8–1.php

into the location bar of your browser and pressing return.

It is important that PHP scripts are saved with a filename extension of
.php. If you omit to do this then the web server may not recognize that
your file contains PHP script and therefore it will not work as intended.

NOTE

Figure 8.2 illustrates the output from the script when viewed using a web browser.

Simplifying your first PHP script

We can simplify this script by stripping away all of the (X)HTML elements before and
after the PHP script to allow us to focus on the PHP script itself. We shall therefore for
the sake of clarify remove the following lines from the start of the script:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

8.3

Your first PHP scriptFIGURE 8.2

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 228

8.4 JUMPING IN AND OUT OF PHP 229

8

Removing these lines from our ‘example8–1.php’ script results in the following lines being
left behind:

�?php
echo ‘�p�Hello, World�/p�’;
?�

This script is a far simpler example to both explain and understand. The PHP code is
enclosed within special start and end tags which denote the start and end of the PHP script:

�?php
?�

In this example the PHP code itself consists of a single instruction which displays the text
‘Hello, World’ on the web browser:

echo “�p�Hello, World�/p�”;

You should note that in the above example we are also outputting some (X)HTML para-
graph tags (�p��/p�) as well as the text ‘Hello, World’. We use the echo construct to
output this information. The echo construct is part of the PHP language and outputs all
parameters passed to it. The following is another example of an echo construct outputting
a simple string of characters:

echo ‘These characters will be output’;

We use the echo construct a lot as it is one of the primary ways of injecting output from
a PHP script into a PHP document. We shall explore this concept further very shortly.

Jumping in and out of PHP

PHP code is often embedded in (X)HTML documents. It can also be used as a stand-alone
programming language and we will be using it as the latter.

Within a document, PHP code is identified through some special tags which denote the
start and end of the PHP code. We mentioned previously that when a browser requests a

8.4

Unfortunately, by removing these XHTML elements before and after
the PHP script we are not producing documents which conform to the
XHTML standard. However, all of these examples and the solutions to
the exercise are available for dowload at the publishers’ web site and
have been written to be XHTML 1.1 compliant.

NOTE

and the following lines from the end of the script:

�/body�

�/html�

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 229

230 CHAPTER 8 INTRODUCTION TO PHP

8

document which contains some PHP script the server passes the document to the PHP
interpreter. Let us look at this process a little more clearly.

The interpreter parses the document line by line, producing as output a file which is identical to
the input document unless it detects a PHP start tag. It interprets the code it finds after the tag
and outputs any echo construct data to the output file until an end PHP tag is detected. It
then continues parsing through the document copying any remaining lines to the output file.

All this happens at the server before the parsed document (with the PHP removed) is sent
to the user’s browser for display). This process is illustrated in Figure 8.3.

To illustrate this more clearly consider this slightly modified ‘Hello, World!’ script:

�body�

�?php
echo ‘�p�Hello, World!�/p�’;
?�

�/body�

The only difference between this script and the cut-down version of the previous
 ‘example8–1.php’ is that we have included a �body� �/body� element around the PHP
script. After the script is parsed the output produced and sent to the web browser is as follows:

�body�

�p�’Hello, World!’�/p�

�/body�

You can prove to yourself that this is true by typing and saving the above script as
 ‘example8–2.php’ and viewing the output using a browser, by typing the following into
your browser location bar:

localhost/example8–2.php

All you will see displayed is the text ‘Hello, World!’, as the �body� �/body� tags are not
visible on a web page. However, if you right click on the web page and select View Page
(in FireFox) or View Source in Internet Explorer source then a window will appear, as
shown in Figure 8.4, illustrating the complete output generated by the PHP parser.

A parsed PHP documentFIGURE 8.3

<?php
echo “Hello”;
?>

XHTML

PHP Interpreter

XHTML

XHTML

XHTML

XHTML

XHTML

XHTML

XHTML

Hello

XHTML

XHTML

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 230

8.5 SEPARATING PHP INSTRUCTIONS 231

8

You can embed PHP start and end tags and code at many points in a (X)HTML document.
Consider the following example:

�?php
echo ‘�p�This is PHP script generated.�/p�’;
?�

�p�This is not.�/p�

�?php
echo ‘�p�This is also PHP script generated.�/p�’;
?�

This example (which can be saved as ‘example8–3.php’) illustrates two separate pairs of
special start and end PHP tags, illustrating that within a document you can move from non-
PHP script back to PHP script. The following output is generated after the above script
has been parsed:

�p�This is PHP script generated.�/p�

�p�This is not.�/p�

�p�This is also PHP script generated.�/p�

The output of this script is illustrated in Figure 8.5.

Separating PHP instructions

Let us look again at the simple Hello, World PHP (‘example8–1.php’) script:

�?php
echo ‘�p�Hello, World!�/p�’;
?�

8.5

PHP parser outputFIGURE 8.4

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 231

232 CHAPTER 8 INTRODUCTION TO PHP

8

In this script there is only one instruction:

echo ‘�p�Hello, World!�/p�’;

PHP requires instructions to be terminated with a semicolon at the end of each statement.
Here is an example of a PHP script (you can save this as ‘example8–4.php’) with two
instructions:

�?php
echo ‘�p�Hello, World!�/p�’;
echo ‘�p�Hello, World!�/p�’;
?�

Commenting your scripts

Comments are human-readable text which is ignored by the PHP interpreter but are
included to provide useful reminders or instructions to the developer or future code
 reader. PHP supports a number of different styles of comments, from C-style single-line
comments like this:

// this is a single line comment

To shell-script single-line comments, which look like this:

this is a shell-style comment

And also multi-line comments, like this:

/* this comment is an example of
a multi-line comment */

8.6

Jumping in and out of PHPFIGURE 8.5

Comments become very useful in large and complex scripts where it
is difficult to work out what is happening. A well-written comment
can help a designer remember or help a new developer understand
what the original writer had implemented.

NOTE

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 232

8.7 BASIC VARIABLES 233

8

The following script illustrates a rather useless use of comments to help the reader follow
what the script is doing. It is useless because the script is so simple that the comments just
add clutter and do nothing to further understanding:

�?php
// File: example8–5.php

/* This script will display the text “Hello, World!” twice on
separate lines of the web browser */

echo ‘�p�Hello, World!�/p�’; // This is the first “Hello, World!”
echo ‘�p�Hello, World!�/p�’; // This is the second.
?�

You should be careful not to ‘nest’ multi-line comments. For example, the following will
cause a problem:

/*
echo ‘Hello’;
/* this comment will cause problems */
*/

Why does this cause a problem? Well, because the parser determines the end of the
 comment when the first */ tag is reached. In the example above the parser will report an
error because it finds a second */ tag.

We shall use comments from now on to indicate the filename of the script example we
have created, for example in the above script:

// File: example8–5.php

Basic variables

Variables can be thought of as containers which hold data. The data held by a variable can
change during the execution of a PHP script, hence the name ‘variable’. PHP variables can
hold different types of information and we will consider this in a little more detail later.
For now let us take a look at what a variable looks like in PHP and how to create them.

Variables in PHP are represented by a $ symbol followed by the name of the variable. Here
is an example variable:

$name�‘Simon’;

The variable is called ‘name’ and it has been assigned the value ‘Simon’.

8.7

PHP variable names are case-sensitive. Therefore the variable $name is
a different variable to $Name. Be careful!

NOTE

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 233

234 CHAPTER 8 INTRODUCTION TO PHP

8

There is a set of rules which need to be considered in naming your variables. A valid
 variable name can start with a letter or an underscore character, followed by any number
of letters, numbers or underscores. The following script illustrates some example valid
variables:

�?php
// File: example8–6.php

$var� ‘Elizabeth’;
$_var� 56;
$Var� ‘Hall’;

echo “�p�$var $Var $_var�/p�”;
?�

The following variables are invalid:

var � ‘Simon’; // Invalid – does not start with a $ symbol
$2var � ‘Simon’; // Invalid – name starts with a number.

Variable types

Variable data is stored in the computer’s memory but the computer needs to know in what
format the data should be stored as different types of data take up different amounts of
space. The format of a piece of data is known as its data type and PHP supports eight primitive
types, which are listed in Table 8.1.

We shall examine each of these types in turn and describe the data they can contain.

8.8

PHP primitive data typesTABLE 8.1

Description Type

Scalar Types Boolean
Integer
Float
String

Compound Types Array
Object

Special Types Resource
NULL

The type of a variable is actually determined by PHP at the run time of the
script depending on how the variable is being used. Such programming
languages are known as weakly typed. In other programming languages,
the variable type is determined by the programmer and these are known
as strongly typed programming languages.

NOTE

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 234

8.8 VARIABLE TYPES 235

8

Previously we described the rules for variable naming. However, it is useful when programming
to use variable names which indicate the type of data which the variable is storing. Table
8.2 lists the different variable types and the three-letter code which can be used at the start
of a variable name to indicate the type of data which the variable is storing.

Variable type namingTABLE 8.2

Type Variable name

Boolean boo
Integer int
Float flo
String str
Array arr
Object obj

The types Resource and NULL are special types and we have chosen
not to give these a variable naming code.NOTE

The following illustrates two variable names:

$strName�‘Elizabeth’;
$intAge�34;

The first variable, $strName, is designed to store a person’s name, which is a string of char-
acters, in this case ‘Elizabeth’, and uses the first three characters ‘str’ to indicate it is storing
a string. The second variable, $intAge, is designed to store a person’s age, which is an integer
number, and uses the first three characters, ‘int’, to indicate that it is storing an integer.

We shall now examine each of the variable types briefly, describing their use and providing
an example of what they look like.

Boolean

A Boolean type expresses a truth value. It can either be TRUE or FALSE. Here is an
example of a variable holding a Boolean value:

$booAnswer�True;

Integer

An integer value is a number from the set:

Z � {. . . , �2, �1, 0, 1, 2, . . .}

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 235

236 CHAPTER 8 INTRODUCTION TO PHP

8

Integer numbers are sometimes called whole numbers as they do not have a fractional part.
Here are some examples of variables assigned to hold an integer value:

$intNumber � 5;
$intAnotherNumber � -5;

The size of an integer is platform-dependent, although you can usually
assume that a maximum value would be two billion. If you specify a
number beyond the size boundary of an integer then PHP interprets
this number as a float.

NOTE

The size of a float is platform-dependent, although you can usually
assume a maximum value of approximately 1.8 to the power of 308.

NOTE

Float

Floating point numbers are also known as floats, doubles or real numbers and are numbers
which can contain a fractional part. Here is an example of a variable assigned to hold a
floating point value:

$floNumber � 1.234;

Floating point values can also be expressed using the following format:

$floAnotherNumber�1.2e3;

String

A string is a series of characters. We have used strings in our previous PHP examples but
it is now time to explain that PHP has three different ways in which strings can be speci-
fied. The first and simplest is to use single quotation marks (‘) to denote the start and end
of the string characters, for example:

‘This is a simple string’

We can assign strings to variables and output them using the echo construct:

�?php

// File: example8–7.php
$strName � ‘Elizabeth’;
echo ‘�p�’;
echo $strName;
echo ‘�/p�’;
?�

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 236

8.8 VARIABLE TYPES 237

8

Because the string uses the single quote characters to specify its start and end we need a
special means of including a single quote if we want to have this character as part of our
string. For example, consider the following text:

Hello I’m Simon

If we were to simply enclose this in single quotes the PHP interpreter would not know
which single quote indicated the end of the string:

‘Hello I’m Simon’

To overcome this problem PHP uses a backslash (\) character known as ‘escape’ to allow
us to include single quotations within our strings. Therefore the above string would look
like this:

‘Hello I\’m Simon’

Strings in PHP can be very large. You don’t need to worry about using
long strings!

NOTE

If you look back over some of our previous examples you will note that we have used
strings which are enclosed in double quotes (“). When a string is enclosed in double quotes,
PHP understands a few more escape characters than it does with single quotes. These
escape characters are listed in Table 8.3.

However, the addition of some extra escape characters is not the end of the story as the
most important feature of a double-quoted string is that it expands any variable names
which are included. Consider the following example:

�?php
// File: example8–8.php

$strName�‘Elizabeth’;

echo ‘�p�$strName�/p�’;
?�

Escape charactersTABLE 8.3

Escape sequence Description

\n Insert a line feed character
\r Insert a carriage return character
\t Insert a tab character
\\ Insert a backslash character
\$ Insert a dollar sign
\” Insert a double quote character

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 237

238 CHAPTER 8 INTRODUCTION TO PHP

8

In the above example the string displayed by echo will be:

�p�$strName�/p�

However, if we amend the script so that the echo construct has a double-quoted string,
like this:

�?php
// File: example8–9.php

$strName�‘Elizabeth’;

echo “�p�$strName�/p�”;
?�

Then the output from the script will be:

�p�Elizabeth�/p�

We shall return to strings in a later chapter and illustrate some of the PHP functions which
allow us to manipulate them.

Array

Arrays in PHP are an ordered map, essentially a data type which maps values to keys.
Arrays are very powerful and we shall explain them in Chapter 11.

Object

The object type is an instance of a class. The whole concept of object orientation and classes
and objects is explained in Chapter 16 so you can forget about this type for the moment.

Resource

A resource is a special variable type which holds a reference (also called a handler) to an
external item, such as a database, a text file or an image which is being created. Resource
types are generated by special functions and we shall highlight them when we encounter
them in later chapters.

NULL

The data type NULL is used to specify a variable that contains no value. A variable is
 considered to be NULL if it has been assigned the type NULL or has been defined but not
set any value, for example:

$var � NULL;

Constants

A constant is a name for a simple value. Unlike a variable, a constant (as the name implies)
does not change during script execution. A PHP constant follows the same naming conventions

8.9

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 238

8.10 EXPRESSIONS 239

8

as PHP variables. A valid name can begin with a letter or underscore character followed by
any number of letters, numbers or underscores.

Constants are case-sensitive but, by default, are always written in
upper case.

NOTE

PHP provides a number of predefined constants to a running script.
The majority of these are created by the various PHP language extensions
and are only available when these extensions are installed.

NOTE

A constant is defined using the ‘define()’ function. PHP contains many different functions
to help make your programming life easier and also allows you to create your own func-
tions (more on this in Chapter 13). The syntax for the use of the ‘define()’ function is:

define (string name, mixed value)

What the above means is that when you create a constant you provide the ‘define()’
 function with its name followed by its value. Here is an example:

�?php
// File: example8–10.php

define (“AUTHOR”, “Simon Stobart”);

echo ‘�p�’;
echo AUTHOR;
echo ‘�/p�’;
?�

Expressions

Expressions are the building blocks of PHP and are so important that we could have begun
this lesson by introducing them. In fact, all of the PHP examples we have used so far have
included expressions. The fact that we didn’t introduce them sooner is that we felt it was
better to get you using some expressions without actually knowing what they were called.
The best definition of an expression in PHP is ‘anything that has a value’, or, put another
way, ‘anything which expresses a value’.

The simplest types of expressions are constants and variables. Consider the following:

$intVar � 23;

The above variable declaration and assignment is an expression. However, when we look
more closely we can see there is a little bit more to this than meets the eye. Firstly, we can
see that the constant value 23 obviously has the value 23. We can say the 23 expresses the
value 23 and is therefore an expression itself. When assigned to the variable $intVar, this
variable now contains a value (23) and it too is an expression in its own right. The assignment
character (�) is known as an operator. Variables and constants are known as operands.
Operators and operands are the building blocks of all expressions in PHP.

8.10

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 239

240 CHAPTER 8 INTRODUCTION TO PHP

8

An operator is something which, when given a value, will produce another value. The operator
is said to operate upon the first value, which is where it gets its name. Operands are the
things that operators operate upon. PHP has three different types of operator: unary operators
which only operate on a single value, binary operators which operate on two values (these
are the latest group of operators which PHP supports) and ternary operators which require
three values. We shall examine each of the operators supported in PHP.

Arithmetic operators

Arithmetic operators perform basic arithmetic and are listed in Table 8.4.

The following script illustrates the outputs obtained from using the above operators:

�?php
// File: example8–11.php

$intA � 5;
$intB � 4;

$intC � $intA � $intB;
echo “�p�$intA � $intB � $intC�/p�”;
$intC � $intA – $intB;
echo “�p�$intA – $intB � $intC�/p�”;
$intC � $intA * $intB;
echo “�p�$intA * $intB � $intC�/p�”;
$intC � $intA / $intB;
echo “�p�$intA / $intB � $intC�/p�”;
$intC � -$intA;
echo “�p�$intA minus � $intC�/p�”;
$intC � $intA % $intB;
echo “�p�$intA % $intB � $intC�/p�”;
?�

Arithmetic operatorsTABLE 8.4

Operator Name Example Result

� Addition $a � $b The sum of $a and $b
� Subtraction $a – $b The difference of $a and $b
* Multiplication $a * $b The product of $a and $b
/ Division $a / $b The quotient of $a divided by $b
� Negation -$a The negative of $a
% Modulus $a % $b The remainder of $a divided by $b

The division operator returns a floating point value even if the two
operands are integers.

NOTE

The output from the above script is illustrated in Figure 8.6.

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 240

8.10 EXPRESSIONS 241

8

Assignment operators

The assignment operator is ‘ � ’ We have used this operator in our previous examples
where we assign a value to a variable, for example:

$intYear � 2005;

Most people wrongly think of the assignment operator as meaning ‘equal to’, as variable
$intYear is equal to 2005, however this is wrong. You should think of the assignment oper-
ator as meaning ‘assigned the value’, as in variable $intYear is assigned the value 2005. In
addition to the simple assignment operator there are also some combination operators
which allow the combining of both arithmetic and assignment operations. Table 8.5 illus-
trates these assignment operators.

The following script illustrates the outputs obtained from using the above operators:

�?php
// File: example8–12.php

$intA � 5;
$intB � 4;

$intA � � $intB;
echo “�p�5 � $intB � $intA�/p�”;
$intA � 5;
$intA -� $intB;
echo “�p�5 – $intB � $intA�/p�”;
$intA � 5;
$intA * � $intB;
echo “�p�5 * $intB � $intA�/p�”;
$intA � 5;
$intA / � $intB;
echo “�p�5 / $intB � $intA�/p�”;
$intA � 5;
$intA % � $intB;
echo “�p�5 % $intB � $intA�/p�”;
?�

The output from the above script is illustrated in Figure 8.7.

Output from arithmetic operatorsFIGURE 8.6

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 241

242 CHAPTER 8 INTRODUCTION TO PHP

8

Bitwise operators

Bitwise operators, also known as bit manipulation operators, allow you to switch individual
bits within an integer on or off. Table 8.6 illustrates the different bitwise operators which
are available.

The following script illustrates the outputs obtained from using the above operators:

�?php
// File: example8–13.php

$intA � 7;
$intB � 2;

$intC � $intA & $intB;
echo “�p�$intA & $intB � $intC�/p�”;
$intC � $intA | $intB;
echo “�p�$intA | $intB � $intC�/p�”;
$intC � $intA ^ $intB;
echo “�p�$intA ^ $intB � $intC�/p�”;

Assignment operatorsTABLE 8.5

Operator Name Example Result

� Assign $a � $b Assign
�� Add and assign $a �� $b Assign the sum of $a and $b to $a
�� Subtract and assign $a -� $b Assign the difference of $a and $b to $a
*� Multiply and assign $a *� $b Assign the product of $a and $b to $a
/� Divide and assign $a /� $b Assign the quotient of $a and $b to $a
%� Get the remainder $a %� $b Assign the remainder of $a divided

and assign by $b to $a

Assignment operatorsFIGURE 8.7

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 242

8.10 EXPRESSIONS 243

8

Bitwise operatorsTABLE 8.6

Operator Name Example Result

& And $a & $b Set bits to 1 where bits in both operands are
set to 1

| Or $a | $b Set bits to 1 where bits in either operand are
set to 1

^ Xor $a ^ $b Set bits to 1 where bits in either operand are
set to 1 but not when both are set.

~ Not ~$a Bits which are set in $a are not set and vice
versa (the high b it is set for negative numbers).

�� Shift left $a �� $b Shift the bits in $a to the left $b steps. Each
step is the same as multiplying by two.

�� Shift right $a �� $b Shift the bits in $a to the right $b steps. Each
step is the same as dividing by two.

Output from bitwise operatorsFIGURE 8.8

$intC � ~$intA;
echo “�p�~$intA � $intC�/p�”;
$intC � $intA �� $intB;
echo “�p�$intA �� $intB � $intC�/p�”;
$intC � $intA �� $intB;
echo “�p�$intA �� $intB � $intC�/p�”;
?�

The output from the above script is illustrated in Figure 8.8.

Bitwise operators often cause the beginner a few problems but the great news is that they
are not used frequently and so if you don’t fully understand them don’t worry about it and
move along. We haven’t got the space to include detailed examples of all of the operators,
but Figure 8.9 illustrates how 7 ^ 2 works.

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 243

244 CHAPTER 8 INTRODUCTION TO PHP

8

In Figure 8.9, we see what the numbers 7 and 2 look like when they are stored in their
binary form – as a byte. The Xor operator checks each bit in each of the two bytes and
where they are both zero or where they are both one it stores a zero in the generated byte.
In the case where one bit is a zero and the other a one then the value one is stored. The
result creates the value five.

Comparison operators

Comparison operators allow you to compare two values. Table 8.7 illustrates the comparison
operators.

We will provide examples of the use of these operators in Chapter 9 when we introduce
the ‘if ’ statement.

Comparison operatorsTABLE 8.7

Operator Name Example Result

�� Equal $a �� $b True if $a is equal to $b
��� Identical $a ��� $b True if $a is equal to $b and they are the

same type
!� Not equal $a !� $b True if $a is not equal to $b
� � Not equal $a � � $b True if $a is not equal to $b
!�� Not identical $a !�� $b True if $a is not equal to $b or they are

not of the same type
� Less than $a � $b True if $a is less than $b
� Greater than $a � $b True if $a is greater than $b
�� Less than or equal to $a �� $b True if $a is less than or equal to $b
�� Greater than or equal to $a �� $b True if $a is greater than or equal to $b

How to calculate 7 ^ 2FIGURE 8.9

7

2

^

128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 244

8.10 EXPRESSIONS 245

8

Ternary operator

The ternary operator (or conditional operator) requires three operands. Its syntax is:

(expr1) ? (expr2) : (expr3)

The operator evaluates to expr2 if expr1 is true or expr3 if expr1 is false. Here is a clearer
example:

$strStockText � ($intStock � 0) ? “In stock” : “Out of stock”;

In the above example the value of variable $strStockText is assigned the string ‘In stock’ if
the variable $intStock is greater than 0, otherwise it is assigned the string ‘Out of stock’.

String operators

PHP supports two string operators which are listed in Table 8.8.

The following script illustrates the use of these operators:

�?php
// File: example8–14.php

$strFirstname � “Simon”;
$strSurname � “Stobart”;
$strFullname � $strFirstname . $strSurname;
echo “�p�$strFirstname joined with $strSurname is $strFullname�/p�”;

$strFullname � $strFirstname . “ “ . $strSurname;
echo “�p�$strFirstname joined with $strSurname with a space is $strFullname�/p�”;

$strFullname � $strFirstname;
$strFullname .� “ “;
$strFullname .� $strSurname;
echo “�p�$strFirstname joined with $strSurname with a space is $strFullname�/p�”;
?�

The output from the above script is shown in Figure 8.10.

If an integer or a float is concatenated to a string then it is converted
to a string. Therefore, the following is perfectly valid:

$intAge � 56;
$strName � “Simon’s Age is”;

$strText � $strName . “ “ . $intAge;
echo $strText;

NOTE

Incrementing and decrementing operators

PHP supports pre-and post-increment and -decrement operators and these are listed in
Table 8.9.

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 245

246 CHAPTER 8 INTRODUCTION TO PHP

8

Increment and decrement operatorsTABLE 8.9

Operator Name Example Result

�� Pre-increment ��$a Increments $a by one and then returns $a
�� Post-increment $a�� Returns $a and then increments $a by one
� Pre-decrement � $a Decrements $a by one and then returns $a
� Post-decrement $a � Returns $a and then decrements $a by one

The following script illustrates the differences between these operators:

�?php
// File: example8–15.php

$intA � 3;

echo ‘�p�$intA begins as ‘ . $intA . “�/p�”;
echo ‘�p�$intA�� ‘ . $intA�� . “�/p�”;
echo ‘�p�$intA is now really ‘ . $intA . “�/p�”;
echo ‘�p���$intA ‘ . ��$intA . “�/p�”;
echo ‘�p�$intA–– ‘ . $intA–– . “�/p�”;
echo ‘�p�$intA is now really ‘ . $intA . “�/p�”;
echo ‘�p� ––$intA ‘ . ––$intA . “�/p�”;
?�

The output from the above script is shown in Figure 8.11.

String operatorsFIGURE 8.10

String operatorsTABLE 8.8

Operator Name Example Result

. Concatenate $a . $b Returns $a concatenated with $b

.� Concatenate and assign $a .�$b Concatenates $b to the end of $a

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 246

8.10 EXPRESSIONS 247

8

The confusing output is a result of the post-increment and post-decrement operators
returning the value to the echo construct (which then displays it) before the value in the
variable is either incremented or decremented.

Logical operatorsTABLE 8.10

Operator Name Example Result

And And $a and $b True if $a and $b are true
Or Or $a or $b True if either $a or $b is true
Xor Xor $a xor $b True if either $a or $b is true but not both.
! Not !$a True is $a is not true
&& And $a && $b True if $a and $b are true
|| Or $a || $b True if either $a or $b is true

The pre- and post-decrement and -increment operators use exactly
the same characters but are pre- or post-depending on whether they
come before or after the expression.

NOTE

The reason why we have different variations of ‘and’ and ‘or ’ is
because they operate at different precedences. This is shown in
Table 8.11.

NOTE

Incrementing and decrementing operatorsFIGURE 8.11

Logical operators

PHP supports six logical operators as shown in Table 8.10.

We shall provide examples of the use of these operators in Chapter 9 when the flow of
control is introduced.

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 247

248 CHAPTER 8 INTRODUCTION TO PHP

8

Operator precedenceTABLE 8.11

Operators Associativity Type

[Left Array
�� � Non-Associative Increment / decrement
! ~ @ Non-Associative Types
* / % Left Arithmetic
� � Left Arithmetic and String
�� �� Left Bitwise
� �� � �� Non-Associative Comparison
�� !� ��� !�� Non-Associative Comparison
& Left Bitwise
^ Left Bitwise
| Left Bitwise
&& Left Logical
|| Left Logical
?: Left Ternary
� �� -� *� /�.� %� &� |� ^� Right Assignment
��� ���

And Left Logical
Xor Left Logical
Or Left Logical
, Left Many uses

Error control operator

PHP supports the error control operator (@). When this operator is prepended to an
expression any error messages that might be generated by that expression are ignored. The
following script illustrates its use:

�?php
// File: example8–16.php

$intA � 7;
$intB � 0;

@$intC � $intA / $intB;
echo “�p�$intA / $intB � $intC�/p�”;
?�

Try removing the @ operator to view the error message.

Array operators

PHP supports a number of array operators and we shall leave introducing these until Chapter 11.

Operator precedence

The precedence of an expression indicates the order in which the various operators in the
expression are evaluated. Consider the following expression:

2 � 4 * 3

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 248

8.11 PREDEFINED VARIABLES 249

88

Now, the answer to this expression could be 2 added to 4 giving 6 which is then multiplied
by 3 giving 18. Or it could be 4 multiplied by 3 giving 12 added to 2 giving 14. In fact, the
answer is 14 because the multiplication operator (*) has a higher precedence than the addi-
tion operator (�). Of course we could use parentheses to force precedence, for example:

(2 � 4) * 3
2 � (4 * 3)

However, PHP has a precedence table which lists the order of precedence of its operators
(see Table 8.11). The highest precedence operators are at the top of the table. Operators
on the same line of the table have equal precedence and in which case the associativity
 column of the table is used to determine the order in the expression from right to left or
left to right that the operators are evaluated.

Predefined variables

PHP provides a large number of predefined variables to any script which is running. Many
of these are platform and server-dependent and therefore cannot be easily documented
here. PHP provides these predefined variables in a set of predefined arrays. These arrays
are known as superglobals as they are available from anywhere in the script. Although we
haven’t yet described arrays, we provide an example of accessing a predefined variable in
the following script to illustrate what they look like:

�?php
// File: example8–17.php

echo “�p�” . $_SERVER[‘DOCUMENT_ROOT’] . “�/p�”;
?�

The predefined variable DOCUMENT_ROOT stores the location of the root server
 documents. On a windows WAMP server this should be:

C:/wamp/www

We shall return to predefined variables in Chapter 12 but, for now, if you examine Table 8.12
you can see the names of the arrays.

Don’t worry if you don’t fully understand the above table, we shall introduce the predefined
variables and explain how to access them where appropriate.

8.11

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 249

250 CHAPTER 8 INTRODUCTION TO PHP

8

Predefined variable superglobalsTABLE 8.12

Predefined arrays of
variables Descriptions

$GLOBALS Contains a reference to all variables which are currently
available

$_SERVER Contains the predefined variables which are set by the
web server

$_GET Contains the predefined variables which are provided to
the script by a URL query string

$_POST Contains the predefined variables which are provided to
the script via HTTP POST

$_COOKIE Contains the predefined variables which are provided by
cookies

$_FILES Contains the predefined variables which are provided via
HTTP post file uploads

$_ENV Contains the predefined variables which are provided to
the script via the environment

$_REQUEST Contains the predefined variables which are provided to
the script via the GET, POST and COOKIE mechanisms

$_SESSION Contains the predefined variables which are currently
registered to a script’s session

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 250

EXERCISES 251

Exercises

8.1 Consider the following variable names. For each one determine if they are valid or
invalid:

$var � 5;
$_var � 5;
$_var_ � 5;
$v3ar � 5;
$5var � 5;
$_5var � 5;

8.2 What will be displayed by the following script?

�?php
echo ‘�p�Hello I\’m Simon�/p�’;
?�

8.3 What three characters do we suggest you start your variable names with to indicate
the type of data the variable is storing for each of the following types?

Boolean
Integer
Float
String
Array
Object

8.4 What will be displayed by the following script?

�?php
define (“NAME”, “Hayley”);

echo “�p�”;
echo “NAME”;
echo ‘NAME’;
echo NAME;
echo ‘�/p�’;
?�

8.5 What will be displayed by the following script?

�?php
$strName � “Simon”;

echo “�p�”;
echo ‘$strName’;
echo “�/p�”;
?� 88

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 251

8

252 CHAPTER 8 INTRODUCTION TO PHP

8.6 What will be displayed by the following script?

�?php
echo “�p�”;
echo 2 � 4 * 4;
echo “�/p�”;
?�

In this chapter we began by introducing the PHP language and describing what it was
designed to do. We explained how the PHP interpreter replaces PHP commands
 embedded within an (X)HTML document with whatever output is produced from PHP
echo constructs. We have shown how to create simple PHP scripts, save them and then
view their output from a web browser.

We have introduced you to the echo construct and explained that this is the primary
method of injecting information into your (X)HTML document. We have explained
 comments and their role as a human-readable aid to understanding scripts. We then
introduced variables and their types as well as predefined variables and constants. We
concluded by covering expressions and the multitude of operands and operators which
PHP supports.

SUMMARY

References and further reading

PHP manual http://www.php.net/manual/en/
PHP web site-www.php.net

Stobart-08.qxp:Stobart-08 11/6/07 8:52 PM Page 252

253

CHAPTER 9

Flow of Control

LEARNING OBJECTIVES

● To understand the concept of flow of control and why it is important in
making scripts more powerful

● To understand and be able to use the ‘if’ construct including the ‘else’ and
‘elseif’ components

● To understand and be able to use the ‘switch’ construct and be able to use
the ‘break’ statement to enhance it

● To understand the concept of iteration, with simple and nested loops

● To understand and be able to use ‘while’, ‘do–while’ and ‘for’ loops

● To understand and be able to use the ‘break’ and ‘continue’ statements to
affect the iteration of a loop

In this chapter, we learn about flow of control. Flow of control is a term which is applied to the
order in which a script’s or program’s statements are executed.

In all of our PHP scripts in Chapter 8, the individual statements were executed sequentially. What
this means is that the interpreter began processing the first statement of the script, followed by the
next statement until the end of the script was reached. Each statement was executed in the order
in which it appeared in the script. Sequential execution of statements is illustrated in Figure 9.1.

However if all a scripting language like PHP could do was to process its statements in sequence
then the sophistication of the scripts we could create would be quite limit. Luckily for us that the
designers of PHP were rather more forward-thinking and included a number of statements which
can be employed in order to change the order of execution of the statements within a script.

In the remainder of this chapter, we introduce the statements which are available to enable us to
affect the flow of control of our PHP scripts and we illustrate these with some simple examples.

INTRODUCTION

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 253

254 CHAPTER 9 FLOW OF CONTROL

9

The ‘if’ construct

The ‘if ’ construct is one of the most powerful features of the PHP language and it allows
for conditional execution of code statements. In other words, the ‘if ’ construct evaluates
an expression and if it is found to be true then the statement following the ‘if ’ condition
is executed. The structure of the ‘if ’ construct is as follows:

if (expression)
statement to be executed if expression is true

Figure 9.2 illustrates the structure of the ‘if ’ construct.

The following is a simple example of the use of the ‘if ’ construct:

�?php
// File: example9–1.php

$intA � 5;
$intB � 3;

if ($intA � $intB)
echo “�p�$intA is greater than $intB�/p�”;

?�

9.1

Sequential executionFIGURE 9.1

Statement

Statement

Statement

The ‘if ’ constructFIGURE 9.2

if construct

Statement

True

False

Statement

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 254

9.1 THE ‘IF’ CONSTRUCT 255

9

In the script above we define two variables and assign them the values 5 and 3. The if
 construct includes a simple conditional expression (see Section 8.10) which evaluates
to either true or false. In this case, the value of variable $intA is larger than $intB and
thus the statement following the ‘if ’ construct is executed. The output from the above
script is:

5 is greater than 3

Because the variables $intA and $intB are fixed this script always
 produces the same output. You need to manually edit and then re-run
the script to change the values of the variables to show that nothing
is displayed if $intA is not greater than $intB.

NOTE

Sometimes we may wish to have more than one statement executed conditionally. We
could do this by including separate ‘if ’ constructs around every statement we wanted to
evaluate, for example:

�?php
// File: example9–2.php

$strColor � “green”;

if ($strColor �� “green”)
echo “�p�The color is green�/p�”;

if ($strColor �� “green”)
echo “�p�Green is a nice color�/p�”;

if ($strColor �� “green”)
echo “�p�We have the color of grass�/p�”;

?�

Luckily we do not have to do this and there is a far easier way of accomplishing this. All we
need to do is to use the open and close brace characters, ‘{‘and’}’, to group all statements
that you wish to execute conditionally into a statement group, for example:

�?php
// File: example9–3.php

$strColor � “green”;
if ($strColor � � “green”) {

echo “�p�The color is green�/p�”;
echo “�p�Green is a nice color�/p�”;
echo “�p�We have the color of grass�/p�”;

}
?�

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 255

256 CHAPTER 9 FLOW OF CONTROL

9

The output from the above two scripts is shown in Figure 9.3.

Using the brace characters we can specify any number of statements
that we wish to execute conditionally.

NOTE

Braces can be formatted so that they appear like the example above:

if (expression) {
. . .

}

Alternatively they can appear on separate lines:

if (expression)
{

. . .
}

NOTE

Output from the ‘if’ constructFIGURE 9.3

The ‘else’ statement

Sometimes you may wish to execute a certain statement if a condition is met and another
statement if it is not. This is accomplished using the ‘else’ statement which extends the ‘if ’
construct. The structure of the ‘if–else’ construct is as follows:

if (expression)
statement to be executed if expression is true

else
statement to be executed if expression is false

Figure 9.4 illustrates the ‘if–else’ construct.

The following is a simple example of the use of the ‘if–else’ construct:

�?php
// File: example9–4.php

$intA � 5;
$intB � 3;

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 256

if ($intA � $intB)
echo “�p�$intA is greater than $intB�/p�”;

else
echo “�p�$intA is less than or equal to $intB�/p�”;

?�

You can alter the values of $intA and $intB to prove that the ‘if–else’ construct
works correctly.

9.1 THE ‘IF’ CONSTRUCT 257

9

The ‘else’ construct cannot be used independently of the ‘if’ construct.NOTE

‘if–else’ constructFIGURE 9.4

if–else construct

statement

statement

statement

True False

In the same way as the ‘if ’ construct, the ‘if–else’ construct employs braces to group
together multiple statements for conditional execution, for example:

�?php
// File: example9–5.php

$strColor�“blue”;

if ($strColor �� “green”) {
echo “�p�The color is green�/p�”;
echo “�p�Green is a nice color�/p�”;
echo “�p�We have the color of grass�/p�”;

}
else {

echo “�p�We don’t know what colour we have�/p�”;
echo “�p�Other than it is not green�/p�”;

}
?�

The output from the above script is illustrated in Figure 9.5.

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 257

The ‘elseif’ statement

The ‘elseif ’ construct is a combination of ‘else’and ‘if ’. It operates in a similar way to the
‘else’ construct, in that it extends the ‘if ’ construct to execute a different statement if the
‘if ’ expression evaluates to false. However it differs in that it will execute the alternative
expression only if the ‘elseif ’ expression is true. The syntax for the ‘elseif ’ construct is:

if (expression1)
statement to be executed if expression1 is true

elseif (expression2)
statement to be executed if expression2 is true

Figure 9.6 illustrates the ‘elseif ’ construct combined with an ‘else’ construct.

258 CHAPTER 9 FLOW OF CONTROL

9

Output from the ‘if–else’ constructFIGURE 9.5

The ‘if–elseif’ constructFIGURE 9.6

if construct

statement

statement statement

statement

elseif construct

True False

True False

You can only use one ‘else’ statement with an ‘if’ construct.NOTE

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 258

9.2 THE ‘SWITCH’ CONSTRUCT 259

9

Figure 9.6 illustrates that an elseif construct can be followed by an else construct, so the
true syntax depicted in the diagram is as follows:

if (expression1)
statement to be executed if expression1 is true

elseif (expression2)
statement to be executed if expression2 is true

else
statement to be executed if expression2 is false

‘If’ constructs can be combined with multiple ‘else’ and ‘elseif’ constructs
to make very complex conditional structures.NOTE

The ‘elseif’ construct cannot be used independently of the ‘if’ construct.NOTE

The following script illustrates the use of the ‘elseif ’ construct:

�?php
// File: example9–6.php

$intNumber1 � 100;
$intNumber2 � 80;

if ($intNumber1 � $intNumber2) {
echo “�p�$intNumber1 is larger than $intNumber2�/p�”;

}
elseif ($intNumber1 �� $intNumber2) {

echo “�p�$intNumber1 is equal to $intNumber2�/p�”;
1}
else {

echo “�p�$intNumber1 is smaller than $intNumber2�/p�”;
}
?�

The ‘switch’ construct

The ‘switch’ construct is similar to a series of ‘if ’ statements acting on the same conditional
expression. The ‘switch’ construct is used when you wish to compare a variable against a
number of different values and execute different code statements depending on the
 variables value. The syntax of the ‘switch’ construct is:

switch (expression) {
case constant expression : statement
case constant expression : statement
. . .

default : statement
}

9.2

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 259

The ‘switch’ construct consists of a ‘switch’ component in which an expression is evaluated. The
result of the expression is then compared in turn to a list of ‘case’ statements. The first ‘case’
value which matches to the expression determines which associated statements are executed.

260 CHAPTER 9 FLOW OF CONTROL

9

While you can implement the ‘switch’ construct using a number of ‘if’
statements the code can become complex and difficult to understand.NOTE

Note the use of the braces to surround the ‘switch’ structure.NOTE

Figure 9.7 illustrates the ‘switch’ construct.

The ‘switch’ constructFIGURE 9.7

switch construct

statement statement statement statement

statement

Case 1 Case 2 Case 3 Case 4

False

The following script illustrates the use of the ‘switch’ construct:

�?php
// File: example9–7.php

$strName � “Elizabeth”;

switch ($strName) {
case “Simon”:

echo “�p�Hello Simon�/p�”;
case “Elizabeth”:

echo “�p�Hello Elizabeth�/p�”;
case “Hayley”:

echo “�p�Hello Hayley�/p�”;
case “Alan”:

echo “�p�Hello Alan�/p�”;
}
?�

In the above example there are four cases which display a message depending on the value
of variable $strName. The output from the above script is shown in Figure 9.8. Interestingly,
the output may not be what you were expecting. Instead of simply displaying the text

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 260

‘Hello Elizabeth’, the script has displayed this and all other ‘echo’ statement messages
which were associated with all of the case statements following that for ‘Elizabeth’.

The output shown in Figure 9.8 is not an error; it is working exactly according to how the
PHP ‘switch’ statement is supposed to work. However, to accomplish the output we would
really like we need to introduce a new statement.

Switch and break

The ‘break’ statement can be used to end the current execution of a ‘switch’ statement. It
can also be used to end the execution of the loop constructs we shall examine later but for
now let us look at it in our ‘switch’ example:

�?php
// File: example9–8.php

$strName � “Elizabeth”;

switch ($strName) {
case “Simon”:

echo “�p�Hello Simon�/p�”;
break;

case “Elizabeth”:
echo “�p�Hello Elizabeth�/p�”;
break;

case “Hayley”:
echo “�p�Hello Hayley�/p�”;
break;

case “Alan”:
echo “�p�Hello Alan�/p�”;

}
?�

In the above script, we have included the ‘break’ statement as the last statement in each
case of the ‘switch’ construct (except the last). When the ‘break’ statement is encountered
the interpreter jumps to the end of the ‘switch’ construct. The result of this is that only
the text output by the ‘echo’ statement within the case which matches the switch

9.2 THE ‘SWITCH’ CONSTRUCT 261

9

Output from the ‘switch’ constructFIGURE 9.8

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 261

Using the ‘break’ statement lets us do some more complex things with the ‘switch’
 construct. For example, ‘if ’ we leave some of the ‘case’ statements empty and include
a strategically placed ‘break’ statement we can show the power of the ‘switch’ statement:

�?php
// File: example9–9.php

$intTotal � 3;

switch ($intTotal) {
case 0:
case 1:
case 2:
case 3:
case 4:

echo “�p�$intTotal is less than or equal to four!�/p�”;
break;

case 5:
echo “�p�$intTotal is greater than four!�/p�”;

}
?�

In the above example, the values 0 to 3 have no associated statements and therefore, if
the ‘case’ is true, then it simply passes control onto the next ‘case’ statement in the list.
Therefore, if the value of $intTotal is between 0 and 4, the ‘echo’ statement associated

262 CHAPTER 9 FLOW OF CONTROL

9

The ‘switch’ construct with ‘breaks’ statementsFIGURE 9.9

switch construct

statement statement statement statement

statement

Case 1 Case 2 Case 3 Case 4

False

Take a closer look at the diagram in Figure 9.9 and compare this to the
one in Figure 9.7. Note how the arrows in Figure 9.9 indicate that
the ‘break’ statements force the exit from the ‘switch’ construct after
each case.

NOTE

 condition is output. Therefore in this example the text output is:

“Hello Elizabeth”

Figure 9.9 illustrates the ‘switch’ construct with ‘break’ statements.

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 262

with case 4 is executed followed by the ‘break’ statement which forces the ‘switch’
 statement to end. Therefore the output produced in this script with the value of $intTotal
being 3 is:

3 is less than or equal to four!

The ‘default’ statement

Another special case of the ‘switch’ statement is the ‘default’ case. The ‘default’ case will
match against anything that wasn’t matched by any of the other cases and thus should
always be the last statement. The following script illustrates its use:

�?php
// File: example9–10.php

$intTotal � 6;

switch ($intTotal) {
case 0:
case 1:
case 2:
case 3:
case 4:

echo “�p�$intTotal is less than or equal to four!�/p�”;
break;

case 5:
echo “�p�$intTotal is equal to five!�/p�”;
break;

default:
echo “�p�$intTotal is greater than five!�/p�”;

}
?�

The output from the above script is illustrated in Figure 9.10.

9.2 THE ‘SWITCH’ CONSTRUCT 263

9

Try adjusting the value contained in the $intTotal variable to check that
the other cases within the ‘switch’ construct work as expected.NOTE

Output from the ‘default’ case of the ‘switch’ statementFIGURE 9.10

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 263

The ‘while’ loop construct

‘while’ loops are the simplest type of loop in PHP, however that is not to say that they are
not powerful. The basic syntax of the ‘while’ loop is:

while (expression)
statement

Like the ‘if ’ construct, ‘while’ loops can use braces to group multiple statements within
them. The syntax for this is:

while (expression) {
statement
. . .

}

The ‘while’ loop can use an alternative syntax to denote the statements it has grouped:

while (expression) :
statement
. . .

endwhile;

The meaning of a ‘while’ statement is simple. It tells PHP to execute the statements nested
within the loop repeatedly, as long as the ‘while’ expression evaluates to true. During each iter-
ation, the value of the expression is checked at the beginning of the loop. If the expression is
true then the loop contents are executed. If false, then control jumps to the statement follow-
ing the loop construct. If the ‘while’ expression evaluates to false on the first iteration; the
statement(s) within the loop are not executed. Figure 9.11 illustrates a ‘while’ loop construct.

The following script illustrates a simple ‘while’ loop:

�?php
// File: example9–11.php

$intCount � 1;

while ($intCount �� 10) {
echo “�p�Iteration $intCount�/p�”;
$intCount��;

}
?�

9.3

264 CHAPTER 9 FLOW OF CONTROL

9

The ‘while’ loop constructFIGURE 9.11

while loop

statement

statement

True

False

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 264

In this example, a variable $intCount is assigned the value 1. The ‘while’ loop expression
checks to see if the value in $intCount is less than or equal to 10 and if so the statements
within the loop are executed. Within the loop, an ‘echo’ construct outputs the value of
variable $intCount, which is then incremented by 1. The output from the above script is
illustrated is Figure 9.12.

9.3 THE ‘WHILE’ LOOP CONSTRUCT 265

9

Output from a ‘while’ loopFIGURE 9.12

Because the statements within a ‘while’ loop may never execute, may
execute only once or may execute many times the ‘while’ loop is
known as a zero, one or many loop.

NOTE

While loops usually use a variable which is incremented or decremented within the loop
to control the number of loop iterations. If you don’t take care to control the number of
times the loop iterates you could end up with a problem, for example:

�?php
// File: example9–12.php

$intCount � 1;

while (1) {
echo “�p�Iteration $intCount�/p�”;
$intCount��;

}
?�

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 265

In this example, the conditional expression that the loop uses to determine whether or not
to iterate once more is simply ‘1’. As this expression is always 1, it always evaluates to true
and therefore the loop will continue for ever, or until the server forces a stop.

The ‘do–while’ loop construct

The ‘do–while’ loop is similar to the ‘while’ loop. The difference is where and when the
loop expression is checked. In a ‘while’ loop, we have shown that the loop expression is
checked at the start of the loop. Therefore, if the expression is false at the start, none of
the statements within the loop are executed. With a ‘do–while’ loop the expression is
 evaluated at the end of the loop, after the statements within the loop have been executed
at least once.

The syntax of the loop is:

do
statement

while (expression);

Figure 9.13 illustrates the syntax of the ‘do–while’ loop.

Like the other flow-of-control constructs previously, braces can be used to group multiple
statements to be executed within the loop:

do {
statement
statement
. . .

}
while (expression);

9.4

266 CHAPTER 9 FLOW OF CONTROL

9

The ‘do–while’ loop constructFIGURE 9.13

statement

while loop

statement

True

False

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 266

The following script illustrates an example of the ‘do–while’ loop:

�?php
// File: example9–13.php
$intCount � 1;

do {
echo “�p�Iteration $intCount�/p�”;
$intCount��;

} while ($intCount � � 10);
?�

The output from the above script is exactly the same as that shown in Figure 9.12.

9.5 THE ‘FOR’ LOOP CONSTRUCT 267

9

Note that the ‘while’ statement has a semi colon at the end to indicate
the end of the ‘do–while’ statement.NOTE

A ‘do–while’ loop is known as a one or many iterative loop, as the
 statements within it are executed at least once and perhaps many times.NOTE

The main difference with a ‘do–while’ loop is that the statements within the loop are
always executed at least once. Consider the following script:

�?php
// File: example9–14.php

$intCount � 1;

do {
echo “�p�Iteration $intCount�/p�”;
$intCount��;

} while ($intCount � 1);
?�

In the above example, the ‘do–while’ loop conditional expression evaluates the value of
$intCount to check that it is less than 1. However as $intCount is initialized to 1 and then
incremented to 2 within the loop, the loop expression is never true. However, the output
produced is:

Iteration 1

If the conditional expression were implemented within a ‘while’ loop then no output
would be produced.

The ‘for’ loop construct

The ‘for’ loop is another commonly used loop. At first glance, they appear to be a little
more complex than the ‘while’ and ‘do–while’ loops as they have three expressions
 incorporated into the condition. The syntax for the loop is:

for (expression1; expression2; expression3)
statement

9.5

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 267

As with the previous loops, braces can be used to group statements within the loop construct:

for (expression1; expression2; expression3) {
statement
statement
. . .

}

The first expression is used to set a start point for the loop, the second one is the main
expression to control how many times the loop will be repeated and the third one is
 normally used to increment the variable which controls the number of iterations around
the loop. Consider the example ‘for’ loop script:

�?php
// File: example9–15.php
for($intCount � 1; $intCount �� 10; $intCount��)

echo “�p�Iteration $intCount�/p�”;
?�

Figure 9.14 illustrates the ‘for’ loop.

The above script produces the same output as the while loop illustrated in Figure 9.12. The
‘for’ loop looks complicated because it contains three expressions as part of its syntax,
but in fact it is basically the same as the while loop, just that the ‘for’ loop gathers
 together in one place the expressions we use in different places within the ‘while’ loop.
This is illustrated in Figure 9.15 which compares the ‘while’ loop script with the ‘for’ loop
script and illustrates where each of the expressions occur.

268 CHAPTER 9 FLOW OF CONTROL

9

The ‘for’ loop constructFIGURE 9.14

for loop

statement

statement

True

False

Because the statements within a ‘for’ loop may never execute, may
execute only once or may execute many times the ‘for’ loop is known
as a zero, one or many loop.

NOTE

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 268

The ‘foreach’ loop construct

PHP supports a special loop construct for accessing the contents of arrays. We shall
 examine this loop in Chapter 11.

Nested loops

Loops in PHP can be nested, which means that a loop can be placed inside another
loop. With a nested loop, the first iteration of the outer loop is begun and then when the
inner loop is encountered the iteration of the inner loop continues until its conditional
expression forces it to stop. At this point the second iteration of the outer loop begins,
 followed by the iteration of the inner loop. The nested loop structure iteration completes
with the final iteration of the outer loop.

Any combination of loop types can be nested and any level of nesting is permitted. Nested loops
allow quite sophisticated scripts to be written easily. Consider the following example:

�?php
// File: example9–16.php

$booBlackWhite � 0;
echo “�table border � ‘1’�”;
for($intRows � 1; $intRows � � 8; $intRows��) {

$intColumns � 1;
echo “�tr�”;
while ($intColumns � � 8) {

if ($booBlackWhite)
echo “�td��img src�‘graphics/blackSquare.gif’ width�‘30’
height�‘30’ alt�‘blackSquare’ align�‘top’/��/td�”;

else
echo “�td��img src�‘graphics/whiteSquare.gif’ width�‘30’ height�‘30’
alt�‘whiteSquare’ align�‘top’/��/td�”;

$intColumns��;
if ($booBlackWhite �� 1)

$booBlackWhite � 0;

9.7

9.6

9.7 NESTED LOOPS 269

9

Comparison of ‘while’ and ‘for’ loopsFIGURE 9.15

echo"<p>Iteration $intCount</p>";

<?php
// while loop

$intCount = 1;

while ($intCount <= 10) {

for ($intCount = 1; $intCount <= 10; $intCount ++)

$intCount ++;

echo"<p>Iteration $intCount</p>";

}
?>

<?php
// for loop

?>

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 269

270 CHAPTER 9 FLOW OF CONTROL

9

else
$booBlackWhite � 1;

}
echo “�/tr�”;
if ($booBlackWhite �� 1)

$booBlackWhite � 0;
else

$booBlackWhite � 1;
}
echo “�/table�”;
?�

The above script uses a ‘while’ loop nested within a ‘for’ loop to produce a chess board
 pattern on the web page. The pattern is a table, the rows and columns of which are
 controlled by the two loops. Two separate ‘if ’ statements control the switching from the
black to the white images.

The black and white squares are produced using two simple gif images. These images have
been placed in a subdirectory:

graphics/

below the location in which the PHP scripts are saved. You need to create your own gif
images (30 x 30 pixels) or download them from the publisher’s web site.

When nesting loop constructs, it is important that both the start and
end part of the loop construct are nested within the outer loop. Failure
to ensure this will cause problems!

The output from the above script is illustrated in Figure 9.16.

Breaking out of loops

We introduced the ‘break’ statement in the ‘switch’ construct showing that it could be
used to break out of the construct at a particular case. The ‘break’ statement can also
be used to terminate the processing of a loop. Remember we showed an example of an
‘infinite while loop’ earlier? Well, here it is again, slightly modified so that it makes use of
a ‘break’ statement to terminate processing:

�?php
// File: example9–17.php

$intCount � 1;

while (1) {
echo “�p�Iteration $intCount�/p�”;
$intCount��;
if ($intCount � 6)

break;
}
?�

9.8

NOTE

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 270

9.8 BREAKING OUT OF LOOPS 271

9
A chess board produced by nested loopsFIGURE 9.16

If a ‘break’ statement is used inside a loop which is nested within
another then the ‘break’ statement will only stop the iteration of the
inner loop and not the outer one. A ‘break’ statement can be used to
break out of more than one nested loop by including an optional
numeric argument which informs the interpreter how many nested
loops are to be broken out of. The syntax looks like this:

break num;

NOTE

An infinite loop stopped with a ‘break’ statementFIGURE 9.17

In the above script, an ‘if ’ construct is used to determine the value contained with
$intCount. If this is greater than 6 then the break statement is executed, causing the loop
iterations to be terminated. The output from this script is illustrated in Figure 9.17.

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 271

Continuing a loop

Complementing the ‘break’ statement is the ‘continue’ statement. The ‘continue’ statement
is used within a loop to skip the remainder of the statements within the current iteration
and jump to the next iteration. Consider the example below:

�?php
// File: example9–18.php

for($intCount � 1; $intCount�10; $intCount��){
if ($intCount % 2)

continue;
echo “�p�$intCount is even.�/p�”;

}
?�

The above script uses a ‘for’ loop to iterate nine times. During each iteration an ‘if ’ construct
is used to determine if the value of $intCount is odd or even. If odd, a ‘continue’
 statement is invoked causing processing to jump to the start of the loop, thus forcing a new
iteration. If even, then a message to this effect is displayed. The output from the script is
illustrated in Figure 9.18.

9.9

272 CHAPTER 9 FLOW OF CONTROL

9

Continue statementFIGURE 9.18

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 272

Exercises

9.1 Write a script which uses a ‘while’ loop to display the two times table:

2 x 1 � 2
2 x 2 � 4
2 x 3 � 6
2 x 4 � 8
2 x 5 � 10
2 x 6 � 12
2 x 7 � 14
2 x 8 � 16
2 x 9 � 18
2 x 10 � 20

Make sure that your script is flexible enough so that simply changing the value stored
in a single variable, for example $intTable would allow it to correctly display a
 different times table.

9.2 Write a script which can display an XHTML table with a numeric value displayed in
each table cell. For example, for a 3 x 4 table the table, should look like this:

The script should use a nested loop construct and should be able, by changing
the values of two variables (for example, $intWidth and $intHeight), to adjust the
size of the table. Therefore, if changed to a 4 x 2 table the output would look
like this:

9.3 Write a script which defines a value of pence in a variable, for example
$intNumberOfPence. It then calculates the minimum number of £2, £1, 50p, 20p,
10p, 5p, 2p and 1p coins that are required to represent that amount. For example if
the value of $intNumberOfPence was 97 then the outout from the script would be:

The minimum number of coins required to make up 97p exactly is:

1 x 50p
2 x 20p
1 x 5p
1 x 2p

1 2 3 4

5 6 7 8

1 2 3

4 5 6

7 8 9

10 11 12

EXERCISES 273

9

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 273

9.4 Using loop constructs, produce a script which will output a calendar. You will need
to define variables to contain the start day of the month (Sunday, Monday, etc.) and
the number of days in the month. The output from a month beginning on a Tuesday
and with 30 days should look like this:

9.5 Write a script which will convert an Arabic format date, for example, 2005, into
Roman numerals. To do this you will need to know the rules for Arabic to Roman
numeral conversion:

S M T W T F S
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

274 CHAPTER 9 FLOW OF CONTROL

9

Numeral Usage

I I � 1
II � 2
III � 3

V IV � 4 (This means 5–1)
V � 5
VI � 6
VII � 7
VIII � 8

X IX � 9 (This means 10–1)
X � 10
. . .

L XL � 40 (This means 50–10)
L � 50
LI � 51
. . .

C XC � 90 (This means 100–10)
C � 100
CI � 101
. . .

D CD � 400 (This means 500–100)
D � 500
DI � 501

M CM � 900 (This means 1000–100)
M � 1000
MI � 1001
. . .

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 274

Here are some dates for you to check your script with:

1900 � MCM
1975 � MCMLXXV
1998 � MCMXCVIII
2000 � MM
2067 � MMLXVII

REFERENCES AND FURTHER READING 275

9

In this chapter, we began by describing the concept of flow of control and explained that
PHP has a number of constructs which can be employed by the programmer to alter the
flow of control through the script statements. The first flow of control statement which
we examined was the ‘if’ statement. This was enhanced through the use of the ‘else’ and
‘elseif’ constructs. Following this, the ‘switch’ statement was described, which is essentially
a different form of ‘if’ construct. The use of the ‘break’ statement was explained to
 control some of the processing within the ‘switch’ construct. Following this, the different
forms of loop constructs, namely the ‘while’, ‘do–while’ and ‘for’ loops were examined.
The chapter concluded by providing some examples of nested loops, breaking out of
and continuing the iteration of various loop constructs.

SUMMARY

References and further reading

Imagenation, PHP Documentation Group. PHP Flow of Control Overview.
http://theopensourcery.com/phpcontrol.htm

Newman, C. (2005) PHP’s Flow Control: Conditional statements. http://www.informit.com/
articles/article.asp?p�381922&rl�1

Wikipedia. Flow of Control. http://en.wikipedia.org/wiki/Control_flow

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 275

Stobart-09.qxp:Stobart-09 11/6/07 9:01 PM Page 276

277

CHAPTER 10

Form Interaction

LEARNING OBJECTIVES

● To understand how PHP can interact with the user through the use of
XHTML forms

● To understand and be able to create an XHTML form construct and
understand why combining PHP and XHTML forms is good practice

● To understand how a PHP form can invoke itself

● To understand how the data provided by the form elements can be
accessed inside a PHP script

● To understand the concept of form validation and how it can be performed

● To understand how form elements’ data can be retained after a form
 submission

● To understand how and why hidden data can be included within a form

In this chapter we are going to examine the way in which the user can interact with a PHP script.
In all of our previous scripts, interaction with the computer user has been one way: the script runs
and the user can view the output. Apart from directly editing the script, the user cannot alter the
way in which the statements function. However, unless we have a means to alter what a script
does or change the data a script uses dynamically during run time, our PHP scripts are always
going to be a bit limited.

Luckily for us, PHP is able to interact with a user via a web page by using forms. Forms are part
of (X)HTML and not part of PHP. However, PHP can be used to access data entered into the form
and use this data within the script.

In this chapter, we begin by explaining how form interaction works. We examine how form field
data can be accessed by a PHP script and why it is often better to combine a form and its

INTRODUCTION

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 277

 accompanying script into a single file. We examine each of the form field types and illustrate how
the data from each of them can be accessed. We conclude the chapter by examining form
 validation and how to retain data on a form so that the user doesn’t have to retype it.

PHP and form interaction

As previously mentioned, PHP can use forms to allow a script to interact with the user.
But how does this work and why would we want to do this? Well, in Chapter 9, we set
a few exercises where user interaction would have allowed us to produce a far more inter-
esting and useful script. Consider the Arabic to Roman date conversion problem. Because
we were unable to interact with the script we were unable to alter the date that we wished
to convert without modifying the original script. While this is slightly annoying in a devel-
opment environment, it has far more serious consequences for any scripts we may wish to
make available online to the Web community.

Consider the security implications that would surround allowing everyone access to your
 server to make changes to your PHP scripts! Apart from allowing access to the inner workings
of your code (which you may not wish to do for confidentiality reasons), you would have to
trust everyone who modified your script to do this properly and in an orderly fashion. Basically,
this is not going to work and so a mechanism to allow users to specify the data that they wish
to input to the script needs to be implemented and this is where forms come in.

By using an XHTML form, we can provide an interface (the form itself) to allow, for
 example, a user to enter the date they wish to convert. This date can then be transferred

10.1

278 CHAPTER 10 FORM INTERACTION

10

Using forms to interact with PHPFIGURE 10.1

(1) Request for
 web formweb user

(3) Web form page sent

Web server

Web server
software

HTML & PHP
web pages

(2) Server finds
 form page

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 278

10.2 A SIMPLE FORM 279

10

Using forms to interact with PHPFIGURE 10.2

(4) Form page
data completedWeb user

Web server

Web server
software

HTML & PHP
Web pages

PHP
Interpreter

(8) Web page

(7) Script
 output

(6) PHP page
sent to
interpreter along
with form data

(5) Server finds
 PHP web page

to the PHP script in the form of a variable for processing by the statements forming the
script. This simple use of forms is illustrated in Figure 10.1.

In Figure 10.1, we see a web user request the form from the web server. This is located
on the server and sent to the user’s client computer to be displayed in the web browser.
Figure 10.2 continues the story.

Figure 10.2 illustrates that the user completes the form by entering the required data. The
form is then returned to the web server which locates the appropriate PHP script and the
script and form data are passed to the PHP interpreter. The output from the interpreter is
then sent back to the client browser to be viewed by the user.

A simple form

Since we are using forms to interact with PHP the best place to start is by creating an
XHTML web form like the one shown here:

�! –— File: example10–1.htm –—�

�h2�Please enter your personal details:�/h2�

�form action�“example10–1.php” method�“post”�

�p�

�label for�“strFirstname”�Firstname: �/label�

10.2

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 279

�input type�“text” name�“strFirstname” id�“strFirstname”/�

�/p��p�

�label for�“strSurname”�Surname: �/label�

�input type�“text” name�“strSurname” id�“strSurname”/�

�/p��p�

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/�

�/p��p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/�

�/p��p�

�input type�“submit”/�

�/p�

�/form�

You should be familiar with XHTML forms but let us take a quick moment to examine the
elements which make up the script.

280 CHAPTER 10 FORM INTERACTION

10

Note that the example web form script is an XHTML document and
should be saved with the extension .htm.

NOTE

The ‘form’ element consists of open and close tags and surround all other elements within
the form:

� form action�“filename” method�“type”�

. . .
�/form�

The start form tag contains two attributes which specify the action to take when the form
is submitted (this is normally the name of the script to invoke, in our case, a PHP script
called ‘example10–1.php’) and the method by which the data should be sent to the script.
PHP supports the post method and so the element looks like this:

�form action�“example10–1.php” method�“post”�

. . .
�/form�

Don’t worry about exactly what is meant by the post method; we shall explain how to
access data sent by the post method shortly. The great thing is that you don’t need to
understand the underlying mechanism to get some good results.

Within the ‘form’ element are a number of other elements. In this case, these are mostly
pairs of ‘label’ elements denoting a text label and linking the label to a particular form input
field:

�label for�“inputFieldId”�textLabel�/label�

The labels are followed by ‘input’ elements and have the following syntax:

�input type�“type” name�“fieldname” id�“inputFieldId”/�

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 280

The ‘input’ element contains a ‘type’ attribute where the type of the form input field is
specified, a ‘name’ attribute where the unique name of the data held within the field
is specified and an ‘id’ attribute to which the ‘label’ element refers. Each pair of form
 elements is surrounded by a ‘paragraph’ element to ensure that the ‘form’ elements appear
on separate lines of the web page:

�p��/p�

Our form fields look like this:

�p�

�label for�“strFirstname”�Firstname: �/label�

�input type�“text” name�“strFirstname” id�“strFirstname”/�

�/p��p�

�label for�“strSurname”�Surname: �/label�

�input type�“text” name�“strSurname” id�“strSurname”/�

�/p��p�

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/�

�/p��p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/�

�/p�

The above ‘input’ elements are simple input fields on the form where the user can type a
free-form answer. To help guide the user on what to enter some accompanying text is used
to label the input elements.

10.2 A SIMPLE FORM 281

10

Input elements have more attributes than we have mentioned above
and you should consult an XHTML guide if you are unsure what they
are and how to use them.

NOTE

Our final input element is of type ‘submit’ and this allows the form data to be submitted.
It displays as a clickable button on the form:

�input type�‘submit’ /�

As the ‘submit’ button isn’t transmitting any relevant data in this example, we have
 chosen not to provide a ‘name’ attribute.

Note that we have specified both ‘text’ and ‘password’ fields. The only
difference is that with a password field, the text is hidden when the
user types anything into the field.

NOTE

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 281

282 CHAPTER 10 FORM INTERACTION

10

The ‘example10–1.htm’ form is shown in Figure 10.3 when loaded into a web browser.
There is no point clicking the form’s submit button just yet as we haven’t produced the
PHP script to process the submitted form data.

The next thing to do is to create the PHP script which the (X)HTML form invokes. This
is shown below:

�?php
// File: example10–1.php

$strFirstname � $_POST[“strFirstname”];
$strSurname � $_POST[“strSurname”];
$strUsername � $_POST[“strUsername”];
$strPassword � $_POST[“strPassword”];

echo “�p�Greetings $strFirstname $strSurname�/p�”;
echo “�p�Your username is $strUsername and your password is $strPassword�/p�”;
?�

Accessing form data is essentially very easy. When a form is created an associated array of
variables is created. This array is called $_POST. Each HTML form element that has a
unique name is stored in the array and can be accessed by the PHP script. The $_POST
syntax is as follows:

$_POST[“name”];

name is the name of the form value we wish to access. In our example we have assigned
the contents of each of our form fields into variables of the same name:

$strFirstname � $_POST[“strFirstname”];
$strSurname � $_POST[“strSurname”];
$strUsername � $_POST[“strUsername”];
$strPassword � $_POST[“strPassword”];

The values of these variables are then displayed using a couple of ‘echo’ statements.

An (X)HTML formFIGURE 10.3

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 282

Now we have mentioned arrays before and have done so again above with the $_POST
array and we still haven’t explained them in any detail. Please bear with us – we do so in
Chapter 11. It is just that they can be a little complex and for now you can access them
without having to worry about how they work.

Figure 10.4 illustrates the output produced by the PHP script when the values ‘Simon’,
‘Stobart’, ‘myusername’ and ‘mypassword’ are entered into the form fields and the submit
button is clicked.

To illustrate the scripts we have built and the interactions that can occur we are going to
introduce a diagramming convention. The diagram is made up of two symbols: boxes which
represent web pages or scripts and arrows which indicate actions. Figure 10.5 Illustrates

10.2 A SIMPLE FORM 283

10

Displaying PHP form dataFIGURE 10.4

Separate (X)HTML and PHP scriptsFIGURE 10.5

Form
data

User loads
this page

PHP script

XHTML form

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 283

our two-script design, with the top box representing the (X)HTML form which invokes the
PHP script, passing the relevant form data (indicated by the arrow). However, separating
the (X)HTML form and the PHP script this way is not actually the best way of doing things.
The problem comes if you want to be able to use the PHP script to check that the form data
is correct and if not display a message next to any field where there is a problem.

If the PHP script is separate from the (X)HTML form, it cannot alter it easily and therefore
the way forward is to combine the (X)HTML form and the PHP script into a single file.

Combining PHP and forms

What we are going to do is to combine our (X)HTML form and PHP script into a single
 document. When the form submit button is clicked the form invokes itself and processes
the PHP script within it. This is illustrated in Figure 10.6.

In Figure 10.6, there is a single script represented by the box and an arrow representing
the submission of data back to the script.

Why would we need to submit the form data back to the script if the script is already
 running? Well, because the data you entered into the form is only accessible to the PHP
script after the submit button is clicked and the form data is submitted to the web server.

Let’s look at an example script which combines the PHP and (X)HTML form:

�h2�Please enter your personal details:�/h2�

�form action�‘example10–2.php’ method�‘post’�

�p�

�label for�“strFirstname”�Firstname: �/label�

�input type�“text” name�“strFirstname” id�“strFirstname”/�

�/p��p�

�label for�“strSurname”�Surname: �/label�

�input type�“text” name�“strSurname” id�“strSurname”/�

�/p��p�

10.3

284 CHAPTER 10 FORM INTERACTION

10

An (X)HTML form and PHP script combinedFIGURE 10.6

Form
data

User loads
this page

XHTML and
PHP combined

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 284

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/�

�/p��p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/�

�/p��p�

�input type�“submit”/�

�/p�

�/form�

�?php
// File: example10–2.php
$strFirstname � $_POST[“strFirstname”];
$strSurname � $_POST[“strSurname”];
$strUsername � $_POST[“strUsername”];
$strPassword � $_POST[“strPassword”];

echo “�p�Greetings $strFirstname $strSurname�/p�”;
echo “�p�Your username is $strUsername and your password is $strPassword�/p�”;
?�

The above script is a combination of the (X)HTML form and the PHP script introduced
previously. However, while syntactically correct and generating no errors the output pro-
duced by the script is not exactly what is required, as illustrated in Figure 10.7.

In Figure 10.7, we see that when the page is viewed for the first time the output from the
PHP script is visible and as no form data has been sent the variables are not defined and an
incomplete message is displayed.

10.3 COMBINING PHP AND FORMS 285

10

Combined (X)HTML and PHP problemFIGURE 10.7

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 285

Furthermore, you might get some warning notices like this displayed:

Notice: Undefined index: strFirstname in C:\wamp\www\PHPLessonExamples\Lesson10\
example10–2.php on line 35

Notice: Undefined index: strSurname in C:\wamp\www\PHPLessonExamples\Lesson10\
example10–2.php on line 36

Notice: Undefined index: strUsername in C:\wamp\www\PHPLessonExamples\Lesson10\
example10–2.php on line 37

Notice: Undefined index: strPassword in C:\wamp\www\PHPLessonExamples\Lesson10\
example10–2.php on line 38

These are informing you, when the script runs for the first time, that these variables have
not been created. By default these warnings are switched off and so you might not see
them displayed on your computer. However, this is not good programming practice
(as described further in Chapter 20) and so we need a means of determining if the form
data was submitted or not.

�h2�Please enter your personal details:�/h2�

�form action�‘example10–3.php’ method�‘post’�

�p�

�label for�“strFirstname”�Firstname: �/label�

�input type�“text” name�“strFirstname” id�“strFirstname”/�

�/p��p�

�label for�“strSurname”�Surname: �/label�

�input type�“text” name�“strSurname” id�“strSurname”/�

�/p��p�

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/�

�/p��p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/�

�/p��p�

�input type�“submit” name�“submit”/�

�/p�

�/form�

�?php
// File: example10–3.php

if (isset($_POST[“submit”])) {
$strFirstname � $_POST[“strFirstname”];
$strSurname � $_POST[“strSurname”];
$strUsername � $_POST[“strUsername”];
$strPassword � $_POST[“strPassword”];

echo “�p�Greetings $strFirstname $strSurname�/p�”;
echo “�p�Your username is $strUsername and your password is

$strPassword�/p�”;
}
?�

286 CHAPTER 10 FORM INTERACTION

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 286

If we examine the above script for changes, we find that there are only two. The first adds
a ‘name’ attribute to the ‘submit’ input type to allow us to refer to it from within the
PHP script:

�p��input type�“submit” name�“submit”/�

The second change is to associate all of the PHP statements within an ‘if ’ construct. The
expression to be evaluated within the ‘if ’ construct is:

if (isset($_POST[“submit”])) {
. . .

}

The ‘if ’ statement contains a function, isset(). The function returns true if a variable has
been set and false if it has not and that variable in this case is $_POST[“submit”]. The value
of $_POST[“submit”] is true if the submit button has been clicked. This means that the
PHP statements within the ‘if ’ construct are only invoked after the form’s submit button
is clicked. Therefore, the first time the script is executed no spurious text is output. The
output from the above script is illustrated in Figure 10.8.

Invoking the correct script

In our previous examples, we have ‘hard coded’ into our form the name of the script to be
invoked when the form is submitted, for example:

�form action�‘example10–3.php’ method�‘post’�

10.4

10.4 INVOKING THE CORRECT SCRIPT 287

10

Working form with combined PHP and XHTMLFIGURE 10.8

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 287

However, it would be great if we could write a script which always knew its name and
would invoke that script automatically.

There is a server variable (we mentioned these in Lesson 1) which contains the name of
the current script. It is:

$_SERVER[“PHP_SELF”]

If we were to echo its contents as part of the form element this would ensure that the
script would always call itself, no matter what name it had been saved as. The form
 element would look like this:

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

288 CHAPTER 10 FORM INTERACTION

10

We shall be using $_SERVER [“PHP_SELF”] in all form scripts from this
point on.

NOTE

An example form

It’s about time we put our knowledge of forms being able to interact with PHP scripts to
some good use. What we have below is a revised version of the answer to the Arabic to
Roman date converter script which was the subject of Exercises:

�h2�Please enter a date in Arabic numerals:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“intDate”�Date: �/label�

�input type�“text” name�“intDate” id�“intDate”/��/p�

�p��input type�“submit” name�“SubmitQuery”/��/p�

�/form�

�?php
// File: example10–4.php

if (isset($_POST[“intDate”])) {
$intDate � $_POST[“intDate”];

echo “�p�$intDate is written “;
while ($intDate �� 1000) {

echo “M”;
$intDate -� 1000;

}
if ($intDate �� 900) {

echo (“CM”);
$intDate -� 900;

}
if ($intDate �� 500) {

10.5

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 288

echo “D”;
$intDate -� 500;

}
if ($intDate �� 400) {

echo (“XD”);
$intDate -� 400;

}
while ($intDate �� 100) {

echo “C”;
$intDate -� 100;

}
if ($intDate �� 90) {

echo (“XC”);
$intDate -� 90;

}
if ($intDate �� 50) {

echo “L”;
$intDate -� 50;

}
if ($intDate �� 40) {

echo (“XL”);
$intDate -� 40;

}
while ($intDate �� 10) {

echo “X”;
$intDate -� 10;

}
if ($intDate �� 9) {

echo (“IX”);
$intDate -� 9;

}
if ($intDate �� 5) {

echo “V”;
$intDate -� 5;

}
if ($intDate �� 4) {

echo (“IV”);
$intDate -� 4;

}
while ($intDate �� 1) {

echo “I”;
$intDate -� 1;

}
echo “ in Roman numerals�/p�”;

}
?�

Figure 10.9 illustrates the output from the above script.

The above script is an improvement on the previous model solution because the form
allows the user to repeatedly change the date they wish to convert without changing the

10.5 AN EXAMPLE FORM 289

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 289

script itself. Let’s take a look at what the script is doing:

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“intDate”�Date: �/label�

�input type�“text” name�“intDate” id�“intDate”/��/p�

�p��input type�“submit” name�“SubmitQuery”/��/p�

�/form�

The form component is actually very simple compared to our last script in that it only
 contains a single input text field and a submit button.

Next, an ‘if ’ construct checks to see if we have an intDate form data field:

if (isset($_POST[“intDate”])) {

If so, then the form data field value is assigned to a variable:

$intDate � $_POST[“intDate”];

The remainder of the script consists of a number of sets of ‘while’ and ‘if ’ constructs. Each
one performs exactly the same function for each of the Roman numerals. Consider the first
‘while’ and ‘if ’ construct pair:

while ($intDate �� 1000) {
echo “M”;
$intDate -� 1000;

}
if ($intDate �� 900) {

echo (“CM”);
$intDate -� 900;

}

The first ‘while’ loop iterates displaying the value ‘M’ and subtracting 1000 from the value
of $intDate until the value of $intDate is below 1000. Next, the ‘if ’ construct checks to
see if the remaining value of $intDate is greater or equal to 900. We need to check this for
the special case of placing a ‘C’ in front of the ‘M’, to indicate 900. If the value of $intDate

290 CHAPTER 10 FORM INTERACTION

10

Arabic to Roman numeral conversionFIGURE 10.9

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 290

is greater than 900 then the value ‘CM’ is displayed and the value of $intDate is reduced
by 900. A number of ‘while’ and ‘if ’ constructs repeat the processing of the date for each
Roman numeral down to ‘I’.

10.6 ACCESSING FORM ELEMENTS 291

10

If you think that the script design looks wasteful and that there should
be a cleaner and better way of coding this script then you would be
right. We shall return to this example later, in Chapter 12.

NOTE

Accessing form elements

So far we have illustrated how to access form data entered in input text fields. Input pass-
word field data is accessed in exactly the same way. We shall continue by examining how
to access data from the various other form elements we can use.

Radio buttons

The radio entry type is another form field we can interact with. It does not allow the user
to enter any text but provides a series of ‘radio buttons’ from which the user can make a
selection. Only one of the buttons grouped together can be selected. An example of the
radio type is shown in the script below:

�h2�Please select your favourite color:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strBlue”�Blue: �/label�

�input type�‘radio’ name�‘strColor’ value�‘blue’ id�‘strBlue’/�

�label for�“strGreen”�Green: �/label�

�input type�‘radio’ name�‘strColor’ value�‘green’ id�‘strGreen’/�

�label for�“strYellow”�Yellow: �/label�

�input type�‘radio’ name�‘strColor’ value�‘yellow’ id�‘strYellow’/�

�label for�“strRed”�Red: �/label�

�input type � ‘radio’ name � ‘strColor’ value � ‘red’ id � ‘strRed’/�

�/p�

�p��input type � ‘submit’ name � ‘submit’/��/p��/form�

�?php
// File: example10–5.php

if (isset($_POST[“submit”])) {
$strColour�$_POST[“strColor”];
echo “�p�Your favourite color is $strColor�/p�”;

}
?�

The script outputs a simple form which contains a series of labels and radio buttons:

�label for�“strBlue”�Blue: �/label�

�input type�‘radio’ name�‘strColor’ value�‘blue’ id�‘strBlue’/�

10.6

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 291

�label for�“strGreen”�Green: �/label�

�input type�‘radio’ name�‘strColor’ value�‘green’ id�‘strGreen’/�

�label for�“strYellow”�Yellow: �/label�

�input type�‘radio’ name�‘strColor’ value�‘yellow’ id�‘strYellow’/�

�label for�“strRed”�Red: �/label�

�input type�‘radio’ name�‘strColor’ value�‘red’ id�‘strRed’/�

Note that each of the radio buttons has a different value assigned to it but all the names
are the same.

292 CHAPTER 10 FORM INTERACTION

10

In order to ensure that the form knows which buttons form a group,
all grouped buttons must share the same name.NOTE

Accessing radio button dataFIGURE 10.10

The PHP script which processes the form data assigns the value of the radio button field
into variable $strColor:

if (isset($_POST[“submit”])) {
$strColour� $_POST[“strColor”];

echo “�p�Your favorite color is $strColor�/p�”;
}

A simple echo statement is then used to output the user’s selected color. The output from
the above script is shown in Figure 10.10.

Checkboxes

Checkbox fields enable the user to select as many options as they like from a form. Each
checkbox is given a unique name. An example of the use of the checkbox form field is

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 292

shown in the script below:

�h2�Please select your favourite colors:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�Blue �input type�‘checkbox’ name�‘strColorBlue’ value�‘blue’/�

Green �input type�‘checkbox’ name�‘strColorGreen’ value�‘green’/�

Yellow �input type�‘checkbox’ name�‘strColorYellow’ value�‘yellow’/�

Red �input type�‘checkbox’ name�‘strColorRed’ value�‘red’/��/p�

�p��input type�‘submit’ name�‘SubmitQuery/��/p�

�/form�

�?php
// File: example10–6.php

if (isset($_POST[“submit”])) {
$strColorBlue � $_POST[“strColorBlue”];
$strColorGreen � $_POST[“strColorGreen”];
$strColorYellow � $_POST[“strColorYellow”];
$strColorRed � $_POST[“strColorRed”];
echo “�p�Your favourite colors are $strColorBlue $strColorGreen $strColorYellow

$strColorRed�/p�”;
}
?�

The above script outputs a form which consists of four label and checkbox fields:

�label for�“strBlue”�Blue: �/label�

�input type�‘checkbox’ name�‘strColorBlue’ value�‘blue’ id�‘strBlue’/�

�label for�“strGreen”�Green: �/label�

�input type�‘checkbox’ name�‘strColorGreen’ value�‘green’ id�‘strGreen’/�

�label for�“strYellow”�Yellow: �/label�

�input type�‘checkbox’ name�‘strColorYellow’ value�‘yellow’ id�‘strYellow’/�

�label for�“strRed”�Red: �/label�

�input type�‘checkbox’ name�‘strColorRed’ value�‘red’ id�‘strRed’/��/p�

Because the user can select any and all checkboxes then the PHP script must ensure that
all data values stored in each checkbox are accessed. This is done here:

$strColourBlue � $_POST[“strColorBlue”];
$strColourGreen � $_POST[“strColorGreen”];
$strColourYellow � $_POST[“strColorYellow”];
$strColourRed � $_POST[“strColorRed”];

Figure 10.11 illustrates the output produced from this script.

Selections

The form selection construct is different from those form elements which we have intro-
duced so far that use the input element. The selection construct actually uses two separate
(X)HTML elements, the select element and the option element. The format for the

10.6 ACCESSING FORM ELEMENTS 293

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 293

 selection construct is:

�select name�‘name’�

�option�option�/option�

. . .
�/select�

An example of the use of this element is shown in the following script:

�h2�Please select your title:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��select name�‘strTitle’�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

�option�Dr�/option�

�/select��/p�

�p��input type�‘submit’ name�‘SubmitQuery’/��/p�

�/form�

�?php
// File: example10–7.php

if (isset($_POST[“submit”])) {
$strTitle � $_POST[“strTitle”];
echo “�p�Your title is $strTitle�/p�”;

}
?�

The above script outputs a form selection construct as follows:

�p��select name�‘strTitle’�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

�option�Dr�/option�

�/select��/p�

294 CHAPTER 10 FORM INTERACTION

10

Acessing checkbox dataFIGURE 10.11

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 294

Note that in this example there are five option elements encompassed within the selection
 element. Accessing the value of the selected data item is the same as for previous scripts:

$strTitle � $_POST[“strTitle”];

The output from the above script is illustrated in Figure 10.12.

Textareas

Another form element is the textarea, a text box of a certain number of rows and columns
into which the user can enter text. The format of the element is:

�textarea name�‘name’ rows�‘num’ cols�‘num’�

�/textarea�

Any text which is surrounded by the start and end tag of the ‘textarea’ element is displayed
in the field when the form is displayed.

The following script illustrates the use of the ‘textarea’ element:

�h2�Please enter your address:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��textarea name�‘strAddress’ rows�‘5’ cols�‘30’��/textarea��/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example10–8.php

if (isset($_POST[“submit”])) {
$strAddress � $_POST[“strAddress”];
echo “�p�Your address is $strAddress�/p�”;

}
?�

10.6 ACCESSING FORM ELEMENTS 295

10

Accessing selection dataFIGURE 10.12

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 295

296 CHAPTER 10 FORM INTERACTION

10

The script displays a textarea field of 30 columns by five rows:

�p��textarea name�‘strAddress’ rows�‘5’ cols�‘30’’’��/textarea��/p�

The address entered into the field is accessed in the same way as with other form elements:

$strAddress � $_POST[“strAddress”];

Figure 10.13 illustrates the use of the ‘textarea’ field.

Accessing ‘textarea’ dataFIGURE 10.13

Four shapes as an ‘input’ elementFIGURE 10.14

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 296

Image fields

Forms can process images as input fields. While, this may at first seem strange consider the
image illustrated in Figure 10.14. This image consists of four shapes and has been saved
with the filename ‘fourshapes.gif ’. The form’s ‘input’ element can be specified as an image
type with the following syntax:

�input type�‘image’ src�‘image’ name�‘name’/�

When clicked, the image element returns the X and Y coordinates of the mouse click to
the form script. These coordinates are returned as two separate data items names,
‘name_x’ and ‘name_y’ where ‘name’ is the name given to the image element. The (0,0)
position of the image is the top left corner. The image is 300 by 300 pixels in size so the
bottom right corner coordinates are (300,300).

The following script illustrates an example of the use of this form element:

�h2�Please click the image:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��input type�‘image’ src�‘graphics/fourshapes.gif’
name�‘intImage’/��/p�

�/form�

�?php
// File: example10–9.php

if (isset($_POST[“intImage_x”])) {
$intImageX � $_POST[“intImage_x”];
$intImageY � $_POST[“intImage_y”];
if ($intImageY � 150 && $intImageX � 150)

echo “�p�You clicked on or near the Circle�/p�”;
if ($intImageY � 150 && $intImageX �� 150)

echo “�p�You clicked on or near the Square�/p�”;
if ($intImageY �� 150 && $intImageX � 150)

echo “�p�You clicked on or near the Triangle�/p�”;
if ($intImageY �� 150 && $intImageX �� 150)

echo “�p�You clicked on or near the Pentagon�/p�”;
}
?�

The above script includes a single ‘image’ input type in the form:

�p��input type�‘image’ src�‘graphics/fourshapes.gif’
name�‘intImage’/��/p�

No submit button is needed as the form is submitted when the image is clicked, so the
check for the submit button needs to be replaced with one which checks for either X or Y
coordinates:

if (isset($_POST[“intImage_x”])) {

The X and Y coordinates are copied into two separate variables:

$intImageX � $_POST[“intImage_x”];
$intImageY � $_POST[“intImage_y”];

10.6 ACCESSING FORM ELEMENTS 297

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 297

Four ‘if ’ statements are used to determine which shape was clicked by determining the
returned X and Y coordinates:

if ($intImageY � 150 && $intImageX � 150)
echo “�p�You clicked on or near the Circle�/p�”;

if ($intImageY � 150 && $intImageX �� 150)
echo “�p�You clicked on or near the Square�/p�”;

if ($intImageY �� 150 && $intImageX � 150)
echo “�p�You clicked on or near the Triangle�/p�”;

if ($intImageY �� 150 && $intImageX �� 150)
echo “�p�You clicked on or near the Pentagon�/p�”;

298 CHAPTER 10 FORM INTERACTION

10

Because the form is returned when the image is clicked, there is no
need for a submit button to be included as part of the form.NOTE

File uploads

Forms can employ an element that allows the user to select a file from the local comput-
er and upload this to the server for access by the PHP script. This is a complex process and
is covered in some detail in Chapter 12.

Form validation and data retention

When interacting with the user, it is important to ensure that the data that you think the
user has entered is in fact what you want. Users are notorious for not typing what you
expect and thus form data validation is very important. If an error in the data entered on
the form is detected, then the form should be redisplayed to the user for correction.
However, it would be very annoying if the user had to re-enter all of the form data, even
that which was correct in the first instance. Therefore, a means of retaining and redisplaying
form data is required.

Present or absent?

One of the simplest forms of validation is to determine if the user has entered anything in
the form field or not. Checking that a text or password field contains data is a simple case
of checking that the variable created from the form field is not of zero length. This can be
done in most cases by using a simple ‘if ’ statement such as:

if (formvariable �� NULL)

In addition to simply checking if a field contains data or not, a suitable error message
should be generated next to the form field to indicate to the user where the problem is.

In the case of a select form field things are a little different. By default, the first item on
the menu is automatically selected. If the user does not want to select the default, you
need a way to tell if they have forgotten to enter it. One way around this problem is to

10.8

10.7

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 298

include a ‘false’ menu item at the top of the menu list. You can then check the variable for
this value and thus reject the entry if it is found.

The following script illustrates whether certain form fields contain data or not:

�?php
// File: example10–10.php

$booTitle � 0;
$booFirstname � 0;
$booSurname � 0;

if (isset($_POST[“submit”])) {
if($_POST[“strTitle”] �� “Select . . . “)

$booTitle � 1;
if($_POST[“strFirstname”] �� NULL)

$booFirstname � 1;
if($_POST[“strSurname”] �� NULL)

$booSurname � 1;
}
?�

�h2�Please select your title and name:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strTitle”�Title: �/label�

�select name�‘strTitle’ id�‘strTitle’�

�option�Select . . . �/option�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

�option�Dr�/option�

�/select�

�?php if ($booTitle) echo “Please select a title!” ?�

�/p�

�p�

�label for�“strFirstname”�Firstname: �/label�

�input type�‘text’ name�‘strFirstname’ id�‘strFirstname’/�

�?php if ($booFirstname) echo “Please enter a firstname!” ?�

�/p�

�p�

�label for�“strSurname”�Surname: �/label�

�input type�‘text’ name�‘strSurname’ id�‘strSurname’/�

�?php if ($booSurname) echo “Please enter a surname!” ?�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
if (!($booTitle � $booFirstname � $booSurname) && isset($_POST[“submit”]))

echo “�p�All is well, you are “ . $_POST[“strTitle”] . “ “ .
$_POST[“strFirstname”] . “ “ . $_POST[“strSurname”] . “�/p�”;
?�

10.8 FORM VALIDATION AND DATA RETENTION 299

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 299

Quite a number of new things have been introduced to the script to allow us to perform
 validation of data. We shall go through each of these in turn. The first thing to note is that
there is some PHP script before the XHTML form as we need to determine if the form
has any missing fields before it is redisplayed. The following three variables are initialized
to zero:

$booTitle � 0;
$booFirstname � 0;
$booSurname � 0;

Next, an ‘if ’ construct determines if the form has been submitted:

if (isset($_POST[“submit”])) {

The variables are used to record whether the form data items contain a value or not. As we
have three form fields, we have three variables. Next, three ‘if ’ constructs determine if the
values of the form elements contain a value or not and if not set the value of the corre-
sponding variable to 1:

if($_POST[“strTitle”] �� “Select . . . “)
$booTitle � 1;

if($_POST[“strFirstname”] �� NULL)
$booFirstname � 1;

if($_POST[“strSurname”] �� NULL)
$booSurname � 1;

The next part of the script outputs the (X)HTML form. Embedded within the form is the
PHP script which will display the ‘error messages’ if the form field is null. The PHP
scripts are:

�?php if ($booTitle) echo “Please select a title!” ?�

�?php if ($booFirstname) echo “Please enter a firstname!” ?�

�?php if ($booSurname) echo “Please enter a surname!” ?�

Finally, after the (X)HTML form we have some further PHP script which determines if
the form has any missing data and if not displays a message that all is well:

if (!($booTitle � $booFirstname � $booSurname) &&
isset($_POST[“submit”]))
echo “�p�All is well, you are “ . $_POST[“strTitle”] . “ “ .

$_POST[“strFirstname”] . “ “ . $_POST[“strSurname”] . “�/p�”;

The output from the above script is shown in Figure 10.15.

Retaining form data

The previous script works well, however it is far from perfect. You will note that, when
you fail to complete one of the form fields and an error message is generated, all the data

300 CHAPTER 10 FORM INTERACTION

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 300

you entered in the other fields is lost. Obviously, it would be far better if this data was
retained so that the user doesn’t have to re-enter or reselect this information. Luckily there
is a way of accomplishing this in PHP.

The following script illustrates how PHP can retain the data entered onto a form with the
select and text elements:

�?php
// File: example10–11.php
$booTitle � 0;
$booFirstname � 0;
$booSurname � 0;
$strTitle � “”;
$strFirstname � “”;
$strSurname � “”;

if (isset($_POST[“submit”])) {
if($_POST[“strTitle”] �� “Select . . .“)

$booTitle � 1;
else

$strTitle � $_POST[“strTitle”];
if($_POST[“strFirstname”] �� NULL)

$booFirstname � 1;
else

$strFirstname � $_POST[“strFirstname”];
if($_POST[“strSurname”] �� NULL)

$booSurname � 1;
else

$strSurname � $_POST[“strSurname”];

10.8 FORM VALIDATION AND DATA RETENTION 301

10

Simple form validationFIGURE 10.15

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 301

302 CHAPTER 10 FORM INTERACTION

10

}
?�

�h2�Please select your title and name:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strTitle”�Title: �/label�

�select name�‘strTitle’ id�‘strTitle’�

�option�Select . . . �/option�

�option �?php if($strTitle �� “Mr”) echo “Selected”
?��Mr�/option�

�option �?php if($strTitle �� “Miss”) echo “Selected”
?��Miss�/option�

�option �?php if($strTitle �� “Ms”) echo “Selected”
?��Ms�/option�

�option �?php if($strTitle �� “Mrs”) echo “Selected”
?��Mrs�/option�

�option �?php if($strTitle �� “Dr”) echo “Selected”
?��Dr�/option��/select�

�?php if ($booTitle) echo “Please select a title!” ?�

�/p�

�p�

�label for�“strFirstname”�Firstname: �/label�

�input type�‘text’ name�‘strFirstname’ value�‘�?php echo $strFirstname ?�’
id�‘strFirstname’/�

�?php if ($booFirstname) echo “Please enter a firstname!” ?�

�/p�

�p�

�label for�“strSurname”�Surname: �/label�

�input type�‘text’ name�‘strSurname’ value�‘�?php echo $strSurname ?�’
id�‘strSurname’/�

�?php if ($booSurname) echo “Please enter a surname!” ?�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
if (!($booTitle � $booFirstname � $booSurname) && isset($_POST[“submit”]))
echo “�p�All is well, you are “ . $_POST[“strTitle”] . “ “ . $_POST[“strFirstname”]
. “ “ . $_POST[“strSurname”] . “�/p�”;
?�

The above script is a modification of the previous script, example10–10.php, with the data
retention included.

Three new variables are defined and assigned to null:

$strTitle � “”;
$strFirstname � “”;
$strSurname � “”;

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 302

These variables are used to hold the values of their corresponding form fields.

When the form is submitted, a number of ‘if ’ constructs set variables either to indicate that
no field data has been received or to hold the value of the data received:

if (isset($_POST[“submit”])) {
if($_POST[“strTitle”] �� “Select . . .“)

$booTitle � 1;
else

$strTitle � $_POST[“strTitle”];
if($_POST[“strFirstname”] �� NULL)

$booFirstname � 1;
else

$strFirstname � $_POST[“strFirstname”];
if($_POST[“strSurname”] �� NULL)

$booSurname � 1;
else

$strSurname � $_POST[“strSurname”];
}

To indicate that a particular option has been selected, the keyword ‘selected’ needs to be
included in the opening option tag:

�option selected�

This means that we need to check each option element to determine if the option was pre-
viously selected and if so output the text “selected”:

�option �?php if($_POST[“strTitle”] �� “Mr”) echo “Selected”
?��Mr�/option�

�option �?php if($_POST[“strTitle”] �� “Miss”) echo “Selected”
?��Miss�/option�

�option �?php if($_POST[“strTitle”] �� “Ms”) echo “Selected”
?��Ms�/option�

�option �?php if($_POST[“strTitle”] �� “Mrs”) echo “Selected”
?��Mrs�/option�

�option �?php if($_POST[“strTitle”] �� “Dr”) echo “Selected”
?��Dr�/option�

This can be quite a problem if you have a lot of select options! Luckily things are much
 easier with input text fields. They simply require a new attribute called value which is set
to the value you wish to be displayed:

�input type�‘text’ name�‘name’ value�‘value’�

10.8 FORM VALIDATION AND DATA RETENTION 303

10

Data retention with ‘password’ form elements is exactly the same as
input text elements.

NOTE

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 303

The PHP which does this is shown here:

�input type�‘text’ name�‘strFirstname’ value�‘�?php
echo $_POST[“strFirstname”] ?�’ id�“strFirstname”/�

�input type�‘text’ name�‘strSurname’ value�‘�?php
echo $_POST[“strSurname”] ?�’ id�“strSurname”/�

Figure 10.16 illustrates the script retaining the form field data even after an error message
of missing data in one of the fields is produced.

Retaining form data entered into a textarea field is slightly different and is illustrated in
the following script:

�?php
// File: example10–12.php
$booAddress � 0;
$booFirstname � 0;
$booSurname � 0;
$strAddress � “”;
$strFirstname � “”;
$strSurname � “”;

if (isset($_POST[“submit”])) {
if($_POST[“strAddress”] �� NULL)

$booAddress � 1;
else

$strAddress � $_POST[“strAddress”];
if($_POST[“strFirstname”] �� NULL)

$booFirstname � 1;

304 CHAPTER 10 FORM INTERACTION

10

Retaining form field data in select and text fieldsFIGURE 10.16

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 304

else
$strFirstname � $_POST[“strFirstname”];

if($_POST[“strSurname”] �� NULL)
$booSurname � 1;
else

$strSurname � $_POST[“strSurname”];
}
?�

�h2�Please enter your name and address:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strFirstname”�Firstname: �/label�

�input type�‘text’ name�‘strFirstname’ value�‘�?php echo $strFirstname ?�’
id�‘strFirstname’/�

�?php if ($booFirstname) echo “Please enter a firstname!” ?�

�/p�

�p�

�label for�“strSurname”�Surname: �/label�

�input type�‘text’ name�‘strSurname’ value�‘�?php echo $strSurname ?�’
id�‘strSurname’/�

�?php if ($booSurname) echo “Please enter a surname!” ?�

�/p�

�p�

�label for�“strAddress”�Address: �/label�

�textarea name�‘strAddress’ rows�‘5’ cols�‘30’ id�‘strAddress’��?php echo
$strAddress ?��/textarea�

�?php if ($booAddress) echo “Please enter an address!” ?�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
if (!($booAddress � $booFirstname � $booSurname) && isset($_POST[“submit”]))

echo “�p�All is well, you are “ . $_POST[“strFirstname”] . “ “ .
$_POST[“strSurname”] . “ and you live here: “ . $_POST[“strAddress”] . “�/p�”;
?�

The above script illustrates how data within the textarea field can be retained. The great
news is that this is easy to accomplish and you simply need to output the value between
the start and end textarea elements:

�textarea�data�/textarea�

This is accomplished above with the line:

�textarea name�‘strAddress’ rows�‘5’ cols � ‘30’ id�‘strAddress’��?php echo
$strAddress ?��/textarea�

The output from the above script is illustrated in Figure 10.17.

In the case of radio buttons and checkbox fields, their settings are retained using the attrib-
ute ‘checked’ as part of the input type:

�input type�‘radio’ name�‘name’ value�‘value’ checked /�

10.8 FORM VALIDATION AND DATA RETENTION 305

10

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 305

�input type�‘checkbox’ name�‘name’ value�‘value’ checked /�

Hidden data

Forms can be used to pass data that you don’t want the user to see. This is achieved
through the use of the form element type of ‘hidden’. Why would you want to do this?
Well, you might want to pass some information from one script to another or back to the
same script via a form but you don’t want the user to see what this data is and or be able
to interfere with it. Let’s create an example script to illustrate what we mean:

�?php
// File: example10–13.php

if (isset($_POST[“submit”])) {
$intCount � $_POST[“intCount”];

$intCount��;
}
else

$intCount � 1;

?�

�h2�The number of times this form has been submitted is: �?php echo($intCount)
?��/h2�

�form action�‘�?php echo($_SERVER[“PHP_SELF”]) ?�’ method�‘post’�

�p��input type�‘hidden’ name�‘intCount’ value�‘�?php echo($intCount) ?�’/�

�input type�‘submit’ name�‘submit’/��/p�

�/form�

10.9

306 CHAPTER 10 FORM INTERACTION

10

Textarea data retentionFIGURE 10.17

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 306

The above script counts the number of times the submit button has been pressed. It does
this by passing a hidden form field with a value set to the number of times the form has
been submitted:

�p��input type�‘hidden’ name�‘intCount’ value�‘�?php echo($intCount) ?�’/�

This form field is hidden from the user but is essential in allowing the PHP script to
‘remember’ the total number of form submissions. The value of $intCount is incremented
at the beginning of the script:

if (isset($_POST[“submit”])) {
$intCount � $_POST[“intCount”];
$intCount��;
}
else
$intCount � 1;

The output from this script is illustrated in Figure 10.18.

10.9 HIDDEN DATA 307

10

Passing hidden form dataFIGURE 10.18

Stobart-10.qxp:Stobart-10 11/6/07 8:56 PM Page 307

10

Exercises

10.1 Write a script which includes a form containing the following elements:

Title (select element)
First name (text element)
Surname (text element)
Username (text element)
Password (password element)
Password Again (password element)

The PHP script should output all the values entered on the form.

10.2 Write a script which modifies the solution to Exercise 10.1. Your PHP script should
now ensure that all form fields contain data.

10.3 Write a script which modifies the solution to Exercise 10.2. Your PHP script should
now ensure that all form fields are retained if any errors are detected.

10.4 Write a script which modifies the solution to Exercise 10.3. Your PHP script should
now perform the following additional validation:

a. Ensure that both password fields are the same.
b. Ensure that the username is not the same as either the first or surname.
c. Ensure that the password is not the same as the first, surname or username.

10.5 Write a script which uses a form to provide the value to the minimum number of
coins exercise you did (Exercise 9.3).

In this chapter we began by introducing simple forms and illustrating how the data
entered by a user on a form can be accessed by a PHP script. Next we considered
whether or not a PHP script should be kept separate from a form and also how to ensure
that a form always invokes itself, whatever name it is saved as. We examined in some
detail how the data from different form elements can be accessed. Finally, we finished
the chapter by examining form validation, data retention and hidden data.

SUMMARY

References and further reading

Refsnes Data. HTML Forms and Input. http://www.w3schools.com/html/html_forms.asp
World Wide Web Consortium. Forms in HTML documents. http://www.w3.org/TR/html4/

interact/forms.html
Wikipedia. Web Forms. http://en.wikipedia.org/wiki/Form_(web)

308 CHAPTER 10 FORM INTERACTION

Stobart-10.qxp:Stobart-10 11/6/07 8:57 PM Page 308

309

CHAPTER 11

Strings and Arrays

LEARNING OBJECTIVES

● To understand the concept of the variable type ‘string’ and its usefulness in
a PHP application

● To be able to access the individual characters in a string

● To be able to calculate the length of a string

● To be able to use various predefined string functions

● To understand the concept of the variable type ‘array’ and its usefulness in
a PHP application

● To be able to implement one-dimensional arrays

● To be able to use the ‘foreach’ loop construct

● To be able to create and use a multi-dimensional array

● To be able to pass an array within a form using the implode and explode
functions

● To be able to determine the size of an array and to add and remove items
from the array

In this chapter, we are going to concentrate on two of the most important data types within the
PHP language. These are strings and arrays. We have in fact introduced strings previously and we
have used them in all of our PHP examples this far, however PHP has quite a powerful set of string
manipulation functions which we can use to help us manipulate our strings fairly easily. We have
also mentioned arrays before and have included a few scripts which make use of arrays. However,
we have not until now actually explained what arrays really are and shown how you can create
your own and why they are so powerful.

INTRODUCTION

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 309

We begin this chapter by re-examining strings and demonstrate how we can manipulate them.
We illustrate how we can access an individual string’s characters, determine the length of a string
and find and replace strings within strings. We examine how to reverse a string, change its case
and encrypt it.

We introduce the concept of arrays and illustrate how to create simple arrays in PHP. We examine
how PHP supports arrays that can use non-numeric keys and how the ‘foreach’ loop can be used
to access the contents of an array. We examine how to create multi-dimensional arrays and what
they can be used for. We illustrate the way in which arrays have to undergo a conversion process
to be passed as part of a form. Finally, we examine some of the functions in the standard PHP
library which enable us to manipulate arrays, such as counting the number of occurrences of data
within an array, sorting the array and implementing a stack.

Strings – a refresher

We have used strings a lot in our previous examples but we want to go over some of the
key features which you should be familiar with just in case you missed them the first time
around. A string is a series of characters encompassed within single or double quotes to
denote the start and end of the string and they can be assigned to variables:

$strFirstname � “Simon”;
$strSurname � ‘Stobart’;

Strings can be output to the browser using the ‘echo’ construct:

echo $strFirstname;

The echo construct can be used to output a string variable inside another string:

echo “$strFirstname”;

In the above example the value ‘Simon’ is displayed. However, if the variable was enclosed
in single quotes, like this:

echo ‘$strFirstname’;

then the output would be $strFirstname as the string name would be displayed not
its contents.

String concatenation

Strings can be concatenated together using the dot operator:

$strFirstname . $strSurname;

If the above was output using the ‘echo’ construct, like this:

echo $strFirstname . $strSurname;

11.1

310 CHAPTER 11 STRINGS AND ARRAYS

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 310

11.1 STRINGS – A REFRESHER 311

11

then the output would be ‘SimonStobart’. To include a space between the first name and
surname, we can use the dot operator to insert a space like this:

echo $strFirstname . “ “ . $strSurname;

or alteratively we can do this:

echo “$strFirstname $strSurname”;

String character access

Strings in PHP consist of zero or more characters. We can refer to the individual
 characters in a string by specifying the zero-based offset of the character we want within
curly braces, for example:

$strName � “Simon”;
$strTheSecondCharacter � $strName{1};

In earlier versions of PHP, the characters []could be used in place of the
braces {} but this is now deprecated and you should use {}.NOTE

The above example stores the value ‘i’ in variable $strTheSecondCharacter, but why? Well,
to understand this you need to understand how the string is stored and referenced.
Consider Figure 11.1 which illustrates how our string is stored.

Figure 11.1 illustrates that string characters are stored consecutively with the first charac-
ter being referenced at position 0 and the second at position 1, etc.

Consider the following script which outputs a string in a table and numbers the character
offsets:

�?php
// File: example11–1.php

$strName � “Simon Stobart”;

echo “�table border�‘1’ width�‘300’�”;
echo “�tr align�‘center’�”;

Character references in a stringFIGURE 11.1

S i m o n

0 1 2 3 4

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 311

for ($intLetter�0;$intLetter�13;$intLetter��)
echo “�td�$intLetter�/td�”;

echo “�/tr�”;
echo “�tr�”;
for ($intLetter�0;$intLetter�13;$intLetter��)

echo “�td align�‘center’�” . $strName{$intLetter} . “�/td�”;
echo “�/tr�”;
echo “�/table�”;
?�

The above script uses two loops to output two rows of a table. The first outputs the
 character offset numbers from 0 to 12:

for ($intLetter�0;$intLetter�13;$intLetter��)
echo “�td�$intLetter�/td�”;

The second outputs the string characters:

for ($intLetter�0;$intLetter�13;$intLetter��)
echo “�td align�‘center’�” . $strName{$intLetter} . “�/td�”;

All the rest of the script contains mainly ‘echo’ statements which form the XHTML table.
Consider the ‘echo’ statement:

echo “�td align�‘center’�” . $strName{$intLetter} . “�/td�”;

We had to use the dot operator to concatenate the output as string character references
cannot be expanded automatically inside of a double-quoted string. The following would
not work:

echo “�td align�‘center’� $strName{$intLetter} �/td�”;

The output from the above script is illustrated in Figure 11.2.

Calculating the length of a string

In the above example, note that we included the length of the string as a constant value as part
of the ‘for’ loop. This is no use if we have implemented a form to obtain a string from the user

312 CHAPTER 11 STRINGS AND ARRAYS

11

String character outputFIGURE 11.2

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 312

as we would not know the length of the string in advance. To overcome this, PHP has a
 function called ‘strlen’ (string length) which returns the number of characters in a string:

length � strlen(string);

We are going to explain how to create our own functions in Chapter 13, but for now it is
probably worth explaining what a PHP function is and how we can use some of those
prewritten and provided with the language. A function is an associated group of statements
which, when invoked, executes those statements. Functions can be written to receive
 values which they then process and affect the result produced by the associated state-
ments. Functions can return a single piece of data, such as an integer or string. Figure 11.3
illustrates graphically that a function can be viewed as a ‘black box’ with data being sent to
it and the result being returned.

11.1 STRINGS – A REFRESHER 313

11

A functionFIGURE 11.3

Data items

Result

PHP function

Exactly how the function performs its ‘magic’ within the box is not
known to the user.NOTE

In the case of the ‘strlen’ function, it can accept a single string value and return the length
of the string. The use of the function is shown in the following script:

�?php
// File: example11–2.php

$strName � “Simon Stobart”;

$intStringLength � strlen($strName);
echo “�p�The string is $intStringLength characters long�/p�”;
?�

In the above script, the value of $strName is passed to the function and the resulting string
length is stored in variable $intStringLength. The output from the script is:

The string is 13 characters long

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 313

Finding a string within a string

The strstr() function can be used to find a specific part of a string inside another string,
the function looks like this:

outputString�strstr(searchString, lookingForString)

Function strstr() requires two parameters to work. The first is the string which we
are going to search and the second is what we are looking for. The function returns the
remainder of the input string from the point at which it finds what we were looking for.
Consider the following example script:

�?php
// File: example11–3.php

$strName � “Simon Stobart”;

$strOutput � strstr($strName, “St”);
echo “�p�The result is $strOutput�/p�”;
?�

The script searches the variable $strName for the string ‘St’. The output from the above
script is:

The result is Stobart

Replacing part of a string

You may wish to replace part of a string with another string. The str_replace() function can
assist you to do this. The function looks like this:

outputString�str_replace (lookingForString, replaceString, searchString)

Here is an example of the function being used:

�?php
// File: example11–4.php

$strSentence � “The use of italics can be useful to highlight certain
words”;

$strOutput � str_replace(“italics”, “italics”, $strSentence);
echo “�p�The string now looks like: ‘$strOutput’�/p�”;
?�

The above script searches the $strSentence string and replaces the text ‘italics’ with
 ‘<i>italics<i>’. The output from the script is:

The string now looks like: ‘The use of italics can be useful to
highlight certain words’

Function str_replace() replaces all occurrences of the string it is looking for found within
the search string with the replace string.

314 CHAPTER 11 STRINGS AND ARRAYS

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 314

Reversing a string

Function strrev() reverses the characters of a string. It looks like this:

reversedString � strrev(startingString);

The function receives a single parameter which is the starting string and returns the string
in reverse order. Following is a script illustrating its use:

�?php
// File: example11–5.php

$strName � “Simon Stobart”;

$strReversed � strrev($strName);
echo “�p�$strName backwards is $strReversed�/p�”;
?�

The above script reverses the string ‘Simon Stobart’ and displays it. The output from the
script is:

Simon Stobart backwards is trabotS nomiS

Changing the case of a string

Sometimes we want to change the case of some strings we use in our scripts. The following
functions are very useful as they help us change the case of the words in our strings or alter
the first character of each word in the string:

upperString strtoupper (inputString);

lowerString strtolower (inputString);

upperFirstString ucfirst (inputString);

upperFirstWordsString ucwords (inputString);

The following script illustrates the use of these functions:

�?php
// File: example11–6.php

$strUpper � strtoupper(“simon stobart”);
$strLower � strtolower(“SIMON STOBART”);
$strUpperFirst � ucfirst(“simon stobart”);
$strUpperFirstWords � ucwords(“simon stobart”);

echo “�p�simon stobart strtoupper � $strUpper�/p�”;
echo “�p�SIMON STOBART strtolower � $strLower�/p�”;
echo “�p�simon stobart ucfirst � $strUpperFirst�/p�”;
echo “�p�simon stobart ucwords � $strUpperFirstWords�/p�”;
?�

The output from the above script is illustrated in Figure 11.4.

11.1 STRINGS – A REFRESHER 315

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 315

Encrypting a string

Sometimes it is a very good idea to encrypt a string for storage in a file or database for
example. Examples of when you may want to do this would be someone’s password
for example. PHP provides a function called MD5 which encrypts a string using the MD5
encryption algorithm. The function looks like this:

encryptedString � md5(unencryptedString)

A script illustrating the use of the function is given below:

�?php
// File: example11–7.php

$strPassword � “secretsquirrel”;
$strEncryptedPassword � md5($strPassword);
echo “�p�$strPassword encrypted is $strEncryptedPassword�/p�”;
?�

The output from the above script is:

secretsquirrel encrypted is d7d9771884d6a6c4a859faa9f7f4dd05

316 CHAPTER 11 STRINGS AND ARRAYS

11

Manipulating the case of a stringFIGURE 11.4

Note that MD5 encryption is one way and thus you cannot recover
the original string from the encrypted form (not easily, that is).NOTE

Other string functions

There are many other string functions provided with the PHP language but unfortunately
we do not have the time or space to examine each and every one. A quick look through the
PHP manual (http://www.php.net/manual/en/) will provide you with a complete list of

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 316

the functions that are available. However, we must now move onto a subject which we
have been promising to get to for some time – arrays.

Creating arrays

An array in PHP is an ordered map, where a map is a type which maps values to keys. Because
PHP stores its arrays as maps it means that they can be used for a whole variety of different
data structures such as lists, trees, stacks, etc. Arrays are used to collect together data, such as
people’s names and perform operations on this data as easily as possible. PHP supports both
single and multi-dimensional arrays, but for now let’s look at creating a very simple array.

A simple array

Arrays are created using the array construct:

theArray � array (arrayItem1, arrayItem2, . . .);

Here is an actual example:

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”);

This creates an array called $arrColors which contains five elements storing various color
names. We can refer to the elements within the array by using a subscript to the array
name. Because the index defaults to numbering the array index from 0, we can access the
first element of the array by the following statement:

$arrColors[0];

and the last element of the array by:

$arrColors[4];

This is illustrated in the following script:

�?php
// File: example11–8.php

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”);

for($intCount�0;$intCount�5;$intCount��)
echo “�p�” . $arrColors[$intCount] . “�/p�”;

?�

The above script uses a ‘for’ loop to access each element of the array. The output from the
script is shown in Figure 11.5.

11.2

11.2 CREATING ARRAYS 317

11

The use of the [] to access the various elements of the array is similar
to the use of braces { } to access string characters.NOTE

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 317

An array with a key

We can create an array and specify our own index key at the same time.:

$arrColors � array (0��”Red”, 1��”Green”, 2��”Blue”, 3��”Yellow”,
4��”White”);

A key index is specified using the operator ��. In the above example, the index has been
specified exactly as the default index would: a numerical index starting from 0 and
 incremented by one each time. But what if we put the index items in a different order and
even missed out an index number, for example:

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 5��””, 1��”Yellow”,
4��”White”);

In the above example, the index has not been created in numerical order and in addition a
blank index key, number 5, has been included. If we use the above array with a slightly
modified version of our simple ‘for’ loop example, we can see what is displayed when we
cycle through the array:

�?php
// File: example11–9.php

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 5��””, 1��”Yellow”,
4��”White”);

for($intCount � 0;$intCount�6;$intCount��)
echo “�p�$intCount “ . $arrColors[$intCount] . “�/p�”;

?�

Note that the for loop now uses the expression �6 to determine the last item in the array
as we have included an extra key. The output from the script is shown in Figure 11.6.

318 CHAPTER 11 STRINGS AND ARRAYS

11

Note that the array elements are output in key order not the order in
which they were defined in the ‘array’ construct.NOTE

Array outputFIGURE 11.5

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 318

Foreach

PHP includes a loop construct specifically designed for iterating through arrays. This loop
construct is known as the ‘foreach’ loop and there are two syntaxes. The first form is:

foreach (array as value) statement

The foreach loop will iterate through the array provided by ‘array’. The value in the
 current index is assigned to ‘value’. The array index is then incremented by one so the next
iteration of the loop accesses the next element of the array. An example of this loop has
been included in the following script:

�?php
// File: example11–10.php

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 5��””, 1��”Yellow”,
4��”White”);
$intCount � 0;
foreach($arrColors as $strColour)

echo “�p�” . $intCount�� . “ $strColour�/p�”;
?�

The output from the above script is illustrated in Figure 11.7.

11.2 CREATING ARRAYS 319

11

Note that the output of the colors is in the order in which they were
declared, not in the numerical index order as with the ‘for’ loop.NOTE

Array key outputFIGURE 11.6

The second form of the ‘foreach’ loop is:

foreach (array as key�� value) statement

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 319

This foreach statement is similar to the previous example but in addition assigns the value
of the current element’s index to the key. This is shown in the following script:

�?php
// File: example11–11.php
$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 5��””, 1��”Yellow”,
4��”White”);
foreach($arrColors as $intKey��$strColor)

echo “�p�$intKey $strColor�/p�”;
?�

The output from the above script is shown in Figure 11.8.

320 CHAPTER 11 STRINGS AND ARRAYS

11

Output from another form of the ‘foreach’ loopFIGURE 11.8

Arrays and the ‘foreach’ loopFIGURE 11.7

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 320

Arrays and Non-numerical Keys

Arrays don’t have to have a numerical key, for example:

$arrColors � array (“red”�� “Red”, “green”��”Green”, “blue”��”Blue”,
“yellow”��”Yellow”, “white”��”White”);

The following script illustrates the use of such an array:

�?php
// File: example11–12.php

$arrColors � array (“red”��”Red”, “green”��”Green”, “blue”��”Blue”,
“yellow”��”Yellow”, “white”��”White”);
foreach($arrColors as $strKey��$strColor)

echo “�p�$strKey $strColor�/p�”;
?�

The output from the above script is illustrated in Figure 11.9.

Using one-dimensional arrays

Okay, we are now going to examine how we can use the power of arrays to help us in
our PHP scripting. All of the arrays we have introduced so far are what we term single-
dimensional arrays as they have only one dimension of values. In the following example,
we use a single-dimensional array to help us check if a username and password is correct.
We build an array of usernames and passwords, where username is the key and password
is the data element. We can then check if the username and password supplied matches
those that we know. Here is the script:

�?php
// File: example11–13.php

$arrUsernamePassword � array (“simon”��”sunderland1345”, “alan”��”stockton526”,
“ian”��”belmont32”, “craig”��”durham412”);

$strEnteredUsername � “alan”;
$strEnteredPassword � “stockton526”;

11.2 CREATING ARRAYS 321

11

Non-numerical keysFIGURE 11.9

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 321

$strStoredPassword � $arrUsernamePassword[$strEnteredUsername];

if (!$strStoredPassword)
echo “�p�Invalid Username!�/p�”;

elseif ($strStoredPassword �� $strEnteredPassword)
echo “�p�Username and Password match!�/p�”;

else
echo “�p�Invalid Password!�/p�”;

?�

The above script defines an array which uses keys to represent usernames and data
 elements to store passwords:

$arrUsernamePassword � array (“simon”��”sunderland1345”,
“alan”��”stockton526”, “ian”��”belmont32”, “craig”��”durham412”);

Two variables hold the ‘entered’ username and password:

$strEnteredUsername � “alan”;
$strEnteredPassword � “stockton526”;

Using the entered username, the array password value is obtained:

$strStoredPassword � $arrUsernamePassword[$strEnteredUsername];

If the entered username was not valid then the array returns a null password and thus the
following is displayed:

if (!$strStoredPassword)
echo “�p�Invalid Username!�/p�”;

The rest of the ‘if ’ construct outputs appropriate messages depending on whether the
 password matches or not:

elseif ($strStoredPassword �� $strEnteredPassword)
echo “�p�Username and Password match!�/p�”;

else
echo “�p�Invalid Password!�/p�”;

In the above example we output the messages ‘Invalid Username!’ and ‘Invalid Password!’. In
a real world application it is often better to simply output a more generic message ‘Invalid
Username and/or Password’ in order that someone who is trying to break into a system is
unaware if they have correctly guessed the username or password specifically.

Multi-dimensional arrays

PHP supports multi-dimensional arrays in addition to single-dimensional ones. Multi-
dimensional arrays are arrays of single-dimensional arrays. Figure 11.10 illustrates a
multi-dimensional array. The array consists of rows storing the car make, the color and the
number in stock.

The array illustrated in Figure 11.10 can be constructed in PHP using the following syntax:

$arrCars � array (array (“Ford”, ”Mazda”, ”Renault”, ”Vauxhall”, ”Toyota”),
array(“Blue”, “Black”, “Red”, “Green”, “Red”),
array(4,4,2,3,2)

);

322 CHAPTER 11 STRINGS AND ARRAYS

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 322

The above ‘array’ construct consists of the overall array called $arrCars and within this are
three single-dimensional arrays, which have no names. Each of these single-dimensional
arrays holds separately the make, color and quantity of car.

The different arrays can be accessed using a subscripted value as we did with the single-
dimensional array. As this array has two dimensions then we need to use two subscripts.
For example:

$arrCars[1][0]

The above will access the element ‘Blue’. The following script illustrates the use of
this array:

�?php
// File: example11–14.php

$arrCars � array (array(“Ford”, ”Mazda”, ”Renault”, ”Vauxhall”, ”Toyota”),
array(“Blue”, “Black”, “Red”, “Green”, “Red”),
array(4,4,2,3,2)

);
for ($intCount�0;$intCount�5;$intCount��) {

$strMake � $arrCars[0][$intCount];
$strColor � $arrCars[1][$intCount];
$intQuantity � $arrCars[2][$intCount];
echo “�p�Make: $strMake Color: $strColor Quantity:

$intQuantity�/p�”;
}
?�

The output from the above script is shown in Figure 11.11.

Using non-numerical keys with multi-dimensional arrays

In our previous multi-dimensional array examples we have not specified any indexes and
so the array defaulted to a numerical integer index. We can however specify our own
numerical index or even use strings. For example:

$arrCars �array (“Make” �� array(“Ford”, “Mazda”, “Renault”, “Vauxhall”, “Toyota”),
“Color”�� array(“Blue”, “Black”, “Red”, “Green”, “Red”),
“Quantity”�� array(4,4,2,3,2)

);

11.2 CREATING ARRAYS 323

11

Multi-dimensional arrayFIGURE 11.10

Ford

Blue

4 4

Mazda

Black

Renault

Red

2

Vauxhall

Green

3 2

Red

Toyota
0

1

2

0 1 2 3 4

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 323

Let’s rewrite our previous script so it now uses a ‘foreach’ loop to access the array and also
the new keys. Here is the script:

�?php
// File: example11–15.php

$arrCars � array (“Make” �� array(“Ford”, “Mazda”, “Renault”, “Vauxhall”, “Toyota”),
“Color” �� array(“Blue”, “Black”, “Red”, “Green”, “Red”),
“Quantity” �� array(4,4,2,3,2)

);

foreach($arrCars[“Make”] as $strKey��$strMake){
$strColor � $arrCars[“Color”][$strKey];
$intQuantity � $arrCars[“Quantity”][$strKey];
echo “�p�Make: $strMake Color: $strColor Quantity:

$intQuantity�/p�”;
}
?�

The output produced is the same as shown in Figure 11.11.

Using arrays with forms

In Chapter 10, we illustrated how we can use forms to communicate with the form user and
that variable data can be retained and hidden within the form. At the time, we did not discuss
arrays and forms as we hadn’t shown you how to create and use your own arrays. Another
 reason is that arrays have to be treated slightly differently from other types when passing them
from form to form. You see you might think that you can include an array as a hidden data
entry in a form, however this doesn’t work. Consider the following example script:

�?php
// File: example11–16.php

if (isset($_POST[“submit”])) {

11.3

324 CHAPTER 11 STRINGS AND ARRAYS

11

Multi-dimensional arrayFIGURE 11.11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 324

echo(“�p�The array contains:�/p�”);
$arrNames � $_POST[‘arrNames’];
for($intCount�0;$intCount�4;$intCount��)

echo”�p�” . $arrNames[$intCount] . “�/p�”;
}
else

$arrNames � array(“Simon”,”Liz”,”Gemma”,”Hayley”);
?�

�h2�A Hidden Array Example�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��input type�‘hidden’ name�‘arrNames’ value�‘�?php echo $arrNames
?�’/�

�input type�‘submit’ name�‘submit’/��/p�

�/form�

The script begins by checking if the form has been submitted and if so displays the
 contents of the array:

if (isset($_POST[“submit”])) {
echo(“�p�The array contains:�/p�”);
$arrNames � $_POST[‘arrNames’];
for($intCount�0;$intCount�4;$intCount��)

echo”�p�” . $arrNames[$intCount] . “�/p�”;
}

If it hasn’t been submitted then this must be the first time the script has been run and
therefore the array is defined:

else
$arrNames � array(“Simon”,”Liz”,”Gemma”,”Hayley”);

The form includes the hidden array and a submit button to post the array data:

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��input type�‘hidden’ name�‘arrNames’ value�‘�?php echo $arrNames
?�’/�

�input type�‘submit’ name�‘submit’/��/p�

�/form�

All this looks well, until we submit the form and we get the output illustrated in Figure 11.12.
What has happened to your array data? Well, unfortunately, you cannot pass arrays
between forms in this way and the data is lost.

There is however a method we can use to get around this problem and that is by using two
special functions called explode and implode.

The way to get around the fact that we cannot send arrays as form data elements is to
 convert them into something we can send. In this case, a string. The explode and implode
functions can be used to convert an array to a string and a string to an array.

The format for the explode function is:

array � explode(separator, string);

11.3 USING ARRAYS WITH FORMS 325

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 325

The function accepts two parameters, the first a string indicating what characters it will use
to search the string to separate it into individual array elements. The second parameter is
the string itself. The function returns an array.

The format of the implode function is:

string � implode(separator, array);

The implode function accepts two parameters, the first a string indicating what characters
it will use to separate each element of the array and the second an array. The function
returns a string. The following script is a rewrite of ‘example11–16.php’ but now using the
explode and implode functions to pass the array via the form as a string:

�?php
// File: example11–17.php
if (isset($_POST[“submit”])) {

echo(“�p�The array contains:�/p�”);
$strNames � $_POST[‘strNames’];
$arrNames � explode(“|”,$strNames);
for($intCount�0;$intCount�4;$intCount��)

echo”�p�” . $arrNames[$intCount] . “�/p�”;
}
else {

$arrNames � array(“Simon”,”Liz”,”Gemma”,”Hayley”);
$strNames � implode(“|”,$arrNames);

}
?�

�h2�A Hidden Array Example�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

326 CHAPTER 11 STRINGS AND ARRAYS

11

An array not working with a formsFIGURE 11.12

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 326

�p��input type�‘hidden’ name�‘strNames’ value�‘�?php echo $strNames
?�’/�

�input type�‘submit’ name�‘submit’/��/p�

�/form�

The script begins by checking if the form has been submitted. If so, the string of names
is obtained and converted to an array using the explode function. The array contents are
then displayed:

if (isset($_POST[“submit”])) {
echo(“�p�The array contains:�/p�”);
$strNames � $_POST[‘strNames’];
$arrNames � explode(“|”,$strNames);
for($intCount�0;$intCount�4;$intCount��)

echo”�p�” . $arrNames[$intCount] . “�/p�”;
}

If it hasn’t been submitted then this must be the first time the script has been run and there-
fore the array is defined. Note that the array is turned into a string with the implode function:

else {
$arrNames � array(“Simon”,”Liz”,”Gemma”,”Hayley”);
$strNames � implode(“|”,$arrNames);

}

The form includes the hidden string:

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��input type�‘hidden’ name�‘strNames’ value�‘�?php echo $strNames
?�’/�

�input type�‘submit’ name�‘submit’/��/p�

�/form�

The output from the above script is illustrated in Figure 11.13.

Manipulating arrays

In the same way as with strings, the PHP function library contains a large number of
 functions to help you manipulate your arrays easily. In the remainder of this chapter, we
introduce some of these functions and illustrate how they can be used to assist you in
your programming.

Counting array elements

The function count() can be used to determine the size of an array (i.e. the number of data
elements it contains). The format of the function is:

size � count(array)

11.4

11.4 MANIPULATING ARRAYS 327

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 327

The function requires an array and returns the size of the array.

The following script illustrates the use of the count function:

�?php
// File: example11–18.php

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 1��”Yellow”,
4��”White”);

$intSize � count($arrColors);

for($intCount�0;$intCount�$intSize;$intCount��)
echo “�p�$intCount “ . $arrColors[$intCount] . “�/p�”;

?�

The above script obtains the size of the array using the count function. This value is then
used to control the number of iterations made by the ‘for’ loop, thus eliminating the need
to include a constant value representing the size of the array.

Replacing an array element

You can replace the contents of an array element by simply assigning a new value to the
array element, using the following syntax:

array[key] � element;

328 CHAPTER 11 STRINGS AND ARRAYS

11

Explode and implode functions at workFIGURE 11.13

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 328

Therefore, consider the following script:

�?php
// File: example11–19.php

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 1��”Yellow”,
4��”White”);

$intSize � count($arrColors);

echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;
$arrColors[3]�“Purple”;
echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;
?�

The above example creates an array and using a for loop displays its contents:

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 1��”Yellow”,
4��”White”);

$intSize � count($arrColors);

echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;

Then the color in element position three is changed and the array is once again displayed:

$arrColors[3] � “Purple”;
echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;

You should note that the color has changed from blue to purple, as illustrated
in Figure 11.14.

Adding elements to the end of an array

Once an array has been created you may wish to add new elements to the end of it. One
method of accomplishing this is as follows:

array[]�element;

11.4 MANIPULATING ARRAYS 329

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 329

The above illustrates that if you wish to add a new element to an existing array you do this
as though you were replacing elements but instead you do not specify the key of the array.
This is illustrated in the following script:

�?php
// File: example11–20.php

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 1��”Yellow”,
4��”White”);

$intSize � count($arrColors);
echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;
$arrColors[] � “Purple”;
$arrColors[] � “Brown”;
$arrColors[] � “Grey”;
$intSize � count($arrColors);
echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;
?�

The above script creates an array and outputs it as the previous one did:

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 1��”Yellow”,
4��”White”);

$intSize � count($arrColors);
echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;

However, next the script adds three colors to the end of the array. Note that it also
 recalculates the size of the array as this is now changed:

$arrColors[] � “Purple”;
$arrColors[] � “Brown”;

330 CHAPTER 11 STRINGS AND ARRAYS

11

Changing an array elementFIGURE 11.14

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 330

$arrColors[] � “Grey”;
$intSize � count($arrColors);

The array is then redisplayed:

echo “�p�”;
for($intCount�0;$intCount�$intSize;$intCount��)

echo $arrColors[$intCount] . “ “;
echo “�/p�”;

The output from the above script is illustrated in Figure 11.15.

Walking the array

PHP supports five functions, which are useful for ‘walking an array’. Walking an array is a
term used to describe a programming requirement where each element of the array is
accessed and used in some way. The ‘foreach’ loop is an example of a construct which
allows us to walk an array. However the loop only enables us to walk the array in a single
direction, from start to end. The reset(), next(), prev(), current() and end() functions allow
us to move from element to element easily. The format of these functions is as follows:

element next (array)
element prev (array)
element current (array)
element end (array)
element reset (array)

The next() function returns the array element in the next place pointed to by the array’s
internal array pointer. At the end of the array, a value of null is returned. When the
 element is returned, the value of the array pointer is advanced by one. The prev() function
returns the previous element pointed to by the array’s internal pointer. If the start of the
array is reached, a value of null is returned. Function current() returns the array element
currently pointed to by the array pointer and does not move the internal pointer. Function
end() moves the internal array pointer to the end of the array and returns the last array
 element. Function reset() moves the internal pointer to the start of the array and returns
the value of the first element.

11.4 MANIPULATING ARRAYS 331

11

New elements added to the end of an arrayFIGURE 11.15

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 331

The following script illustrates an example of the use of these functions:

�?php
// File: example11–21.php

$arrColors � array (0��”Red”, 2��”Green”, 3��”Blue”, 1��”Yellow”,
4��”White”);

echo “�p�”;
$strColour � reset($arrColors);
echo “$strColor “;
$strColor � next($arrColors);
echo “$strColor “;
$strColor � next($arrColors);
echo “$strColor “;
$strColor � prev($arrColors);
echo “$strColor “;
$strColor � current($arrColors);
echo “$strColor “;
$strColor � end($arrColors);
echo “$strColor “;
echo “�/p�”;
?�

The script simply jumps around the array using the different functions displaying the
 element value for each time. The output produced by the script is:

Red Green Blue Green Green White

Pushing and popping – creating a stack

What we often need to be able to do is to implement an array which will allow us to add and
remove data to and from the end of the array. This is known as implementing a stack. Adding
data to the end of the stack is known as pushing and removing data is known as popping. PHP
has two functions which enable you to push and pop data, the format of these are:

element array_pop(array)
numberStored array_push(array, element)

Function array_pop() requires an array as a parameter. It returns the value stored in the
last element in the array and reduces the array size by one. Function array_push() requires
an array and the data you wish to add to the array as parameters. The array is increased
in size by one element and the data is stored in this element. The function returns the
 number of elements stored in the array.

The following script illustrates the use of these functions:

�?php
// File: example11–22.php

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”);

332 CHAPTER 11 STRINGS AND ARRAYS

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 332

echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

$strColour � array_pop($arrColors);
echo “�p�$strColor�/p�”;
$strColour � array_pop($arrColors);
echo “�p�$strColor�/p�”;

echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

array_push($arrColors, “Grey”);
echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;
?�

The script first displays the contents of the array:

echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

It then pops off two elements from the end of the array:

$strColor � array_pop($arrColors);
echo “�p�$strColor�/p�”;
$strColor � array_pop($arrColors);
echo “�p�$strColor�/p�”;

The array is once again displayed:

echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

Finally, a new color is pushed onto the array and the array is displayed again in full:

array_push($arrColors, “Grey”);
echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

The output from the script is illustrated in Figure 11.16.

11.4 MANIPULATING ARRAYS 333

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 333

Counting occurrences

If an array contains a number of identical elements you may wish to count the numbers of
each of them. Function array_count_values() can be used to do this and it looks like this:

array array_count_values(array)

The function requires an array as a parameter and returns an array of the results. The
 following script illustrates the use of the function:

�?php
// File: example11–23.php

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”,
“Yellow”, “Green”, “Blue”, “Yellow”, “Grey”,
“Red”, “Yellow”, “Blue”, “Yellow”, “White”);

$arrCount � array_count_values($arrColors);

foreach($arrCount as $strColor��$intCount)
echo “�p�$strColor occurs $intCount times�/p�”;

?�

The above script declares and populates an array:

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”,
“Yellow”, “Green”, “Blue”, “Yellow”, “Grey”,
“Red”, “Yellow”, “Blue”, “Yellow”, “White”);

The array_count_values() function is invoked creating a new array indexed on the number
of occurances:

$arrCount � array_count_values($arrColors);

The new array is then displayed:

foreach($arrCount as $strColor��$intCount)
echo “�p�$strColor occurs $intCount times�/p�”;

The output produced from the above script is illustrated in Figure 11.17.

334 CHAPTER 11 STRINGS AND ARRAYS

11

Implementing a stackFIGURE 11.16

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 334

Sorting simple arrays

Functions sort() and rsort() are used to sort an array. Function sort() is used to sort an
array in numerical or alphabetical order from lowest to highest. Function rsort() sorts the
array from highest to lowest. The format of these functions is:

sort(array)
rsort(array)

Both functions require an array as a parameter and return the original array sorted. The fol-
lowing script illustrates the use of these functions:

�?php
// File: example11–24.php

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”);

echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

sort($arrColors);
echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

rsort($arrColors);
echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;
?�

11.4 MANIPULATING ARRAYS 335

11

Counting occurrences in an arrayFIGURE 11.17

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 335

The above script creates an array and displays it:

$arrColors � array (“Red”, “Green”, “Blue”, “Yellow”, “White”);

echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

The array is then sorted and then redisplayed:

sort($arrColors);
echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

The array is then reverse sorted and redisplayed:

rsort($arrColors);
echo “�p�”;
foreach($arrColors as $strColor)

echo “$strColor “;
echo “�/p�”;

The output from the above script is illustrated in Figure 11.18.

Sorting multi-dimensional arrays

If you need to sort a multi-dimensional array, you can use the array_multisort() function,
which looks like:

result array_multisort (array, flags)

The array_multisort() function returns true or false depending on whether the sort was
accomplished successfully or not. It requires the array to sort and can also accept some flag
parameters to affect how the sort is performed.

336 CHAPTER 11 STRINGS AND ARRAYS

11

Output from sorting an arrayFIGURE 11.18

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 336

These flags are:

SORT_ASC – sort in ascending order
SORT_DESC – sort in descending order
SORT_REGULAR – compare items normally
SORT_NUMERIC – compare items numerically
SORT_STRING – compare items as strings

The following script illustrates the use of the array_multisort() function:

�?php
// File: example11–25.php

$arrCars � array(array(“Ford”,”Mazda”,”Renault”,”Vauxhall”,”Toyota”),
array(“Blue”, “Black”, “Red”, “Green”, “Red”),
array(4,4,2,3,3)

);

echo “�h1�Unsorted�/h1�”;

for ($intCount�0;$intCount�5;$intCount��) {
$strMake � $arrCars[0][$intCount];
$strColor � $arrCars[1][$intCount];
$intQuantity � $arrCars[2][$intCount];
echo “�p�Make: $strMake Color: $strColor Quantity:

$intQuantity�/p�”;
}

echo “�h1�Sorted�/h1�”;

array_multisort($arrCars[0],SORT_ASC, SORT_STRING,
$arrCars[1],SORT_ASC, SORT_STRING,
$arrCars[2],SORT_NUMERIC);

for ($intCount�0;$intCount�5;$intCount��) {
$strMake � $arrCars[0][$intCount];
$strColor � $arrCars[1][$intCount];
$intQuantity � $arrCars[2][$intCount];
echo “�p�Make: $strMake Color: $strColor Quantity:

$intQuantity�/p�”;
}
?�

The above script firstly creates the array and displays it in its unsorted form:

$arrCars � array(array(“Ford”,”Mazda”,”Renault”,”Vauxhall”,”Toyota”),
array(“Blue”, “Black”, “Red”, “Green”, “Red”),
array(4,4,2,3,3)

);

echo “�h1�Unsorted�/h1�”;

for ($intCount�0;$intCount�5;$intCount��) {
$strMake � $arrCars[0][$intCount];
$strColor � $arrCars[1][$intCount];
$intQuantity � $arrCars[2][$intCount];

11.4 MANIPULATING ARRAYS 337

11

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 337

echo “�p�Make: $strMake Color: $strColour Quantity:
$intQuantity�/p�”;
}

Next, the array_multisort() function is used to sort the array. The array is sorted on make,
model and then quantity. The make and model are sorted in ascending order and are
 treated as strings. The quantity element is treated as numbers:

array_multisort($arrCars[0],SORT_ASC, SORT_STRING,
$arrCars[1],SORT_ASC, SORT_STRING,
$arrCars[2],SORT_NUMERIC);

Finally, the sorted array is displayed:

for ($intCount�0;$intCount�5;$intCount��) {
$strMake � $arrCars[0][$intCount];
$strColor � $arrCars[1][$intCount];
$intQuantity � $arrCars[2][$intCount];
echo “�p�Make: $strMake Color: $strColor Quantity:

$intQuantity�/p�”;
}

The output from the above script is illustrated in Figure 11.19.

338 CHAPTER 11 STRINGS AND ARRAYS

11

A sorted multi-dimensional arrayFIGURE 11.19

Stobart-11.qxp:Stobart-11 11/7/07 5:44 PM Page 338

EXERCISES 339

Exercises

11.1 Write a script which uses a form to allow the user to enter a string and then display
each of the string characters in a single row table with the correct string character
 reference above it. Therefore with the string ‘Simon’, the output generated would
look like this:

11.2 Write a script which uses a form to allow the user to enter in a password string.
Your script should have an encrypted password as a constant value stored within a
variable. You should determine if the newly entered password is the same as the
encrypted one.

11.3 Write a script which amends the solution to Exercise 11.2 example above so that it
uses a form to allow the user to enter their username and password which can then
be checked against an array holding the names and passwords.

11.4 Write a script which uses a form to collect sales figures for an unknown number of
sales people. The form should contain the following fields:

Sales person name
Monday
Tuesday
Wednesday
Thursday
Friday

The user can enter a sales person’s data on the form and then click the submit
 button to enter another sales person’s details. The form should also have a ‘calculate’
button which, when clicked, displays a table showing the weekly sales figures.
Assuming there were three sales people called Simon, Joe and Lynn (the table below
shows random sales data) the table might look this:

Day / Person Simon Joe Lynn

Monday 34 54 12

Tuesday 3 145 76

Wednesday 56 24 45

Thursday 45 35 24

Friday 32 36 24

0 1 2 3 4

S i m o n

11

Stobart-11.qxp:Stobart-11 11/7/07 5:45 PM Page 339

340 CHAPTER 11 STRINGS AND ARRAYS

11 References and further reading

Refsnes Data. PHP String Functions. http://www.w3schools.com/php/php_ref_string.asp
Tizag.com PHP Tutorial: Arrays. http://www.tizag.com/phpT/arrays.php

In this chapter we began by re-examining strings and how they can be manipulated. We
illustrated a variety of standard library functions which enable string manipulation, such as
reversing a string or encrypting it.

We then introduced the concept of arrays and illustrated how to create simple arrays and
multi-dimensional arrays in PHP. We examined how arrays need to be converted into
strings to pass them via a form and finished by examining some of the functions in the
standard PHP library which enable us to manipulate arrays, such as counting the number
of occurrences of data within an array, sorting the array and implementing a stack.

SUMMARY

Stobart-11.qxp:Stobart-11 11/7/07 5:45 PM Page 340

341

CHAPTER 12

Files, Cookies, Sessions and Email

LEARNING OBJECTIVES

● To understand what a file is and how to open and close one

● To understand how to read data from a file

● To understand how to create a new file

● To understand how to use cookies

● To understand how to use sessions

● To understand how to upload files from a form to a server

● To understand how to generate email messages from within the PHP
language

● To understand how to generate an (X)HTML email message

In this chapter, we concentrate on all things to do with ‘files’. We begin by explaining what a file
is and how they can be created. We illustrate how data in files can be read and how files can be
a useful means of storing information in the long term. We also introduce how to manipulate sim-
ple files and examine some of the functions which PHP provides to make this easier to do. Then
we investigate the role of cookies and sessions within the PHP environment and explain that while
these are files they have very specific and important roles.

We examine how files can be uploaded to the server using a form interface. File uploading is very
important if you want to implement a form-based, remote-document-sharing system. Next we
introduce the concept of emails and how to create them in PHP. While you may not think of an
email as a file, it is a document which is created and stored outside the PHP script and thus we
felt it appropriate to include email in this chapter.

INTRODUCTION

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 341

Files

Physically, a file is a sequential collection of characters which can be manipulated.
Computers use files for all sorts of different things and so logically a file might be viewed
as a collection of data records, a computer program, an email or a word document. Mostly,
computers use files for storing information on a storage device such as a disk drive to access
later. PHP includes a large collection of functions for the manipulation and creation of files.
We begin by looking at how to open and close a file.

Opening and Closing a File

Before we can read the contents of a file or change or add data to it we need to open the file.
Opening a file forms a link between the PHP script and the file itself. This link is maintained
through a special type known as a resource. PHP uses a function called fopen() to open a file:

filestream � fopen (filename, mode);

The fopen() function requires the name of the file to open and a string indicating the mode
in which to open the file. The function returns a file stream resource pointing to the opened
file. Files can be open in a number of different modes and these are listed in Table 12.1.

Okay, but what is a file pointer? A file pointer is stored in the resource stream which is
returned when a file is opened. The pointer ‘points’ to a location in the file. For example,
when a file is opened to read its contents, the file pointer is at the start of the file and
moves through the file with each successive read. In the case of a file which is opened for
writing at the end, the file pointer points to the end of the file as that is normally where
new data is written.

PHP allows you to open a file on the local machine as well as on a remote machine (if
 security permissions allow). Remote files can be accessed via HTTP or FTP connections.

12.1

342 CHAPTER 12 FILES

12

File open modesTABLE 12.1

Mode Description

r Open for reading only; place the file pointer at the beginning of the file.
r� Open for reading and writing; place the file pointer at the beginning of the file.
w Open for writing only; place the file pointer at the beginning of the file and

truncate the file to zero length; if the file does not exist, attempt to create it.
w� Open for reading and writing; place the file pointer at the beginning of the file and

truncate the file to zero length; if the file does not exist, attempt to create it.
a Open for writing only; place the file pointer at the end of the file; if the file does

not exist, attempt to create it.
a� Open for reading and writing; place the file pointer at the end of the file; if the file

does not exist, attempt to create it.
x Create and open for writing only; place the file pointer at the beginning of the file;

if the file already exists, the fopen() function call fails.
X� Create and open for reading and writing; place the file pointer at the beginning of

the file; if the file already exists, the fopen() function call fails.

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 342

If the filename begins with http:// then an HTTP connection to the specified server is
opened and a pointer to the requested file is returned.

Figure 12.1 illustrates the concept of a file pointer with files open in two modes.

Once you have finished accessing a file, you should close it to free up memory and inform
the operating system that you have finished with the file. In PHP, the function fclose() is
used to close a file:

fclose (filestream);

The fclose() function requires the resource stream of the file to close and returns true or
false depending on whether it was able to close the file or not. The following script illus-
trates the use of these two functions in what is at the moment a rather useless example
(we will improve it a little later):

�?php
// File: example12–1.php

$fileTextFile � fopen (“text.txt”,’a’);

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

else
echo “�p�File Closed�/p�”;

?�

There is no output from the above script (unless there is a problem with opening or
 closing the file).

12.1 FILES 343

12

File pointersFIGURE 12.1

FILE FILE

File pointer File start File start

File end

File pointer

File end

File opened
for reading

File opened
for writing only

If you are running on a UNIX system then you need to ensure that you
have the correct permissions in the directory to which you are writing.NOTE

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 343

Reading from a file

Single characters can be read from a file using the fgetc() function. This function has the
following syntax:

character � fgetc (filestream);

The fgetc() function receives the file stream resource of the file to read and returns the
character read from the file.

Before we go any further, let us create a text file to use in our examples. Create a
 simple text file containing the following text and save it as ‘text.txt’ in a sub-directory
called ‘files’:

1. The quick brown fox jumped over the lazy dog.

2. The quick brown fox jumped over the lazy dog.

3. The quick brown fox jumped over the lazy dog.

4. The quick brown fox jumped over the lazy dog.

The following script uses the fgetc() function to read and display the first character of the
‘text.txt’ file:

�?php
// File: example12–2.php

$fileTextFile � fopen (“files/text.txt”,’r’);

$strChar � fgetc($fileTextFile);
echo “�p�$strChar�/p�”;

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

The output from the above script is:

1

To read the whole file we need to implement a loop construct. We also need some way
of determining the end of the file. The feof() function can be used to check if the file
pointer is at the end of the file. The function looks like this:

feof (filestream);

The function requires a file stream parameter and returns true or false depending on
whether the end of the file has been reached. Let’s modify our previous script to make use
of this function and read the entire file:

�?php
// File: example12–3.php

$fileTextFile � fopen (“files/text.txt”,’r’);

344 CHAPTER 12 FILES

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 344

echo “�p�”;
while (!feof($fileTextFile)) {

$strChar � fgetc($fileTextFile);
echo “$strChar”;

}
echo “�/p�”;

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

In the above example, note the use of the ‘while’ loop and feof() function to control the
iteration through the file:

while (!feof($fileTextFile)) {

The output from the above script is shown in Figure 12.2.

‘Ah, but’ we hear you cry, ‘why is the output in the browser not formatted with each line
of the file on a separate line?’ Well, the simple answer is that you haven’t formatted the
output in that way. In order to do this you should read a whole line of the file and output
this with XHTML �br/� elements so that each line of the file appears on a separate line
of the browser. The easiest way to do this is with another function, fgets():

string � fgets (filestream, length);

Function fgets() requires one parameter, but can accept two. The first parameter is the file
stream to read and the second is an integer indicating the maximum number of characters
to read in one go. The function reads into a string a number of characters up to the size of
length, or until a newline character is read or the end of file marker is encountered. The
function returns a string of the characters it has read.

12.1 FILES 345

12

Contents of a fileFIGURE 12.2

If the length parameter is not specified then the length defaults to
1 kB, or 1024 bytes.NOTE

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 345

The following script is a modification of the previous one that uses the fgets() function and
formats the output of the file to the browser:

�?php
// File: example12–4.php
$fileTextFile � fopen (“files/text.txt”,’r’);

echo “�p�”;
while (!feof($fileTextFile)) {

$strLine � fgets($fileTextFile);
echo “$strLine�br/�”;

}
echo “�/p�”;

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

The output from the above script is illustrated in Figure 12.3.

Getting the size of a file

The size of a file in bytes can be easily found by using the filesize() function:

filesize � filesize (filename);

The function returns an integer of the size of the file in bytes. This function is useful if you
want to determine the size of a file, for example, to decide if you really want to read it or not.

Reading an entire file

You can read an entire file by using the fread() function:

string � fread (filestream, length);

The fread() function consists of two parameters, the first of which is the file stream
and the second is the number of characters to read. If this is set to the length of the file

346 CHAPTER 12 FILES

12

Formatted contents of a fileFIGURE 12.3

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 346

then the whole file is read in one go. The function returns a string of the file contents. The
following script illustrates the use of this function:

�?php
// File: example12–5.php

$fileTextFile � fopen (“files/text.txt”,’r’);

$intSize � filesize (“files/text.txt”);
$strFile � fread($fileTextFile, $intSize);
echo “�p�$strFile�/p�”;

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

The output from the above script is the same as that in Figure 12.3.

Creating a new file

So far, the examples have shown that files can be read and displayed. However, using PHP
file-handling facilities you can also write data to files. The function fwrite() allows strings
to be written to a file; its syntax is:

fwrite(filestream, stringToWrite);

The fwrite() function requires two parameters, the first is the file stream and the second
is the data to write to the file. The following script illustrates the use of this function:

�?php
// File: example12–6.php

$fileTextFile � fopen (“files/newtext.txt”,’w’);

$strDataOne � “Simon”;
$strDataTwo � “Elizabeth”;

fwrite($fileTextFile, $strDataOne);
fwrite($fileTextFile, $strDataTwo);

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

else
echo “�p�Closed Successfully�/p�”;

?�

The above script opens a new file for writing:

$fileTextFile � fopen (“files/newtext.txt”,’w’);

Two variables are declared to hold strings which are going to be written to the file:

$strDataOne � “Simon”;
$strDataTwo � “Elizabeth”;

12.1 FILES 347

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 347

The two strings are written to the file:

fwrite($fileTextFile, $strDataOne);
fwrite($fileTextFile, $strDataTwo);

There is no browser output from the script but if you check the ‘files’ sub-directory, you
should find a new file called ‘newtext.txt’ and when viewed should contain the data shown
in Figure 12.4.

If you want the data ‘records’ you write to a file to appear on separate lines, you need to
include the escaped characters ‘\r\n’ at the end of each line. This is illustrated in the
 following script which is a simple modification of the one above:

�?php
// File: example12–7.php

$fileTextFile � fopen (“files/newertext.txt”,’w’);

$strDataOne � “Simon\r\n”;
$strDataTwo � “Elizabeth”;

fwrite($fileTextFile, $strDataOne);
fwrite($fileTextFile, $strDataTwo);

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

The file should now contain the data formatted as shown in Figure 12.5.

Adding to an existing file

We can also add records to an existing file using the fwrite() function. Consider the
 following script:

�?php
// File: example12–8.php

348 CHAPTER 12 FILES

12

Contents of the ‘newtext.txt’ fileFIGURE 12.4

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 348

$fileTextFile � fopen (“files/text.txt”,’a’);

$strDataOne � “Simon\r\n”;
$strDataTwo � “Elizabeth\r\n”;

fwrite($fileTextFile, $strDataOne);
fwrite($fileTextFile, $strDataTwo);

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

After running this script, the ‘text.txt’ file should contain the data formatted as shown in
Figure 12.6.

12.1 FILES 349

12
Formatted contents of the ‘newtext.txt’ fileFIGURE 12.5

If your file doesn’t look exactly the same as the example in Figure 12.6,
this could be because there wasn’t an extra carriage return and new
line on the last line of the original file.

NOTE

Amended contents of the ‘text.txt’ fileFIGURE 12.6

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 349

Checking if a file exists

To check a file exists, we use the file_exists() function:

file_exists (filename);

The file_exists() function requires the name of the file to check for and returns true or
false depending on whether the file is found. The following is a simple script to check if a
file is present:

�?php
// File: example5–9.php

if (!file_exists(“files/text.txt”))
echo “�p�File Doesn’t exist!�/p�”;

else
echo “�p�File Exists!�/p�”;

?�

Cookies

Cookies are a mechanism for a browser to store data on the client computer. Because
the cookie is available the next time the web page is visited, cookies can be used to track
or identify returning users to a web page. The important thing to remember about cookies
is that they are stored on the client computer, as illustrated in Figure 12.7. Cookies are a
type of file which is why we have included them in this chapter.

Browsers can control whether cookies can be written and thus you cannot guarantee that
they are allowed. This is a major problem with cookies.

Creating a cookie

To create a cookie we need to use the setcookie() function:

setcookie (name, value, expire, path, domain, secure)

12.2

350 CHAPTER 12 FILES

12

Cookies are stored on the client computerFIGURE 12.7

PHP server

Data communicationCookie data

Client Browser

Cookie

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 350

With the setcookie() function, all the arguments except ‘name’ are optional. If only the
‘name’ argument is present, a cookie by that name is deleted from the client. You may also
replace any argument with an empty string (“”) in order to skip that argument. Table 12.2
lists the setcookie() function arguments and describes their use.

The setcookie() function returns true or false depending on whether the cookie was
 successfully created.

When using cookies you need to know the following:

● Cookies do not become visible until the next loading of a page for which the
cookie is visible. To test if a cookie was successfully set, check for the cookie on
a next loading page before the cookie expires. Expiry time is set via the ‘expire’
parameter.

● Cookies must be deleted with the same parameters with which they were set.
● Cookie names can be set as array names and are available to your PHP scripts

as arrays but separate cookies are stored on the user’s system. You may wish to
 consider using the explode() or serialize() functions to set one cookie with multiple
names and values.

The following script illustrates the use of the setcookie() function:

�?php
// File: example12–10.php

$strValue � “Hello, this is a cookie”;

setcookie (“TestCookie”, $strValue);

echo “�p�Cookie Set�/p�”;
?�

The above script declares a string variable which it writes to a cookie called ‘TestCookie’.
There is no obvious output from the script so to see if we have success fully created a cookie
and if we can read its data, then we need to know how to look at and access a cookie.

Cookie creation is part of the HTTP header which defines the (X)HTML script and so the
setcookie() function must be called before any output is sent to the browser. If you are

12.2 COOKIES 351

12

The setcookie() function parametersTABLE 12.2

Mode Description

Name Name of the cookie file
Value Data to be stored in cookie file
Expire Date string that defines the valid life time of the cookie
Path Subset of URLs in a domain for which the cookie is valid
Domain The domain for which the cookie is available
Secure If set to ‘1’ the cookie is only transmitted if the communications channel with the

host is secure (https)

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 351

 creating your script with all the valid (X)HTML document information, you may think
that your script should look like this:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

�?php
// File: example12–11.php
$strValue � “Hello, this is a cookie”;
setcookie (“TestCookie”, $strValue);
echo “�p�Cookie Set�/p�”;
?�

�/body�

�/html�

Unfortunately, the above script returns an error:

Warning: Cannot modify header information – headers already sent by (output
 started at
/home/cs0sst/public_html/PHPLessonExamples/Lesson12/example12–11.php:11) in
/home/cs0sst/public_html/PHPLessonExamples/Lesson12/example12–11.php on line 14

This error indicates that the setcookie() function was not output before information was
sent to the browser. This is indeed the case as all of the document header information was
sent. In order to correctly produce a valid (X)HTML document with a cookie you need to
set the cookie before the heading elements, like so:

�?php
// File: example12–12.php

$strValue � “Hello, this is a cookie”;
setcookie (“TestCookie”, $strValue);
?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

�?php

352 CHAPTER 12 FILES

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 352

echo “�p�Cookie Set�/p�”;
?�

�/body�

�/html�

In order to reduce space, we shall show the simple script forms.

Reading a cookie

Viewing and accessing cookies is easy. We mentioned previously that cookie variables could
be accessed using the predefined $_COOKIE array and this is exactly how we shall access
them. Remember that cookies do not become visible until the next loading of a page. To
test if a cookie was successfully set, we need to check for the cookie on the next load of
the page before the cookie expires. The script below illustrates checking for our cookie:

�?php
// File: example12–13.php

$strCookieData � $_COOKIE[“TestCookie”];

echo “�p�$strCookieData�/p�”;
?�

The output from the above script is:

Hello, this is a cookie

Deleting a cookie

Cookies can be deleted by simply using the setcookie() function with only the name of the
cookie, for example:

setcookie (“TestCookie”);

Storing multiple data items in a cookie

One way of storing multiple variable data items within a cookie is to create a string with
all preferred information stored within it and pass it as a single value to the cookie. We
can then use the explode() function to extract all the information from the cookie. The
following script illustrates the creation of the cookie’s data:

�?php
// File: example12–14.php

$strAddress � $_SERVER[‘REMOTE_ADDR’];
$strBrowser � $_SERVER[‘HTTP_USER_AGENT’];
$strOs � $_ENV[‘OS’];

$strInfo � “$strAddress::$strBrowser::$strOs”;
setcookie (“AnotherCookie”, $strInfo);
?�

12.2 COOKIES 353

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 353

The script obtains three predefined variables which hold the address of the client, the
browser being used and the operating system:

$strAddress � $_SERVER[‘REMOTE_ADDR’];
$strBrowser � $_SERVER[‘HTTP_USER_AGENT’];
$strOs � $_ENV[‘OS’];

These are combined and written to the cookie:

$strInfo � “$strAddress::$strBrowser::$strOs”;
setcookie (“AnotherCookie”, $strInfo);

The next script illustrates the retrieving of the data from the cookie:

�?php
// File: example12–15.php

$strReadCookie � $_COOKIE[“AnotherCookie”];
$arrList � explode (“::”, $strReadCookie);

echo “�p�IP Address: $arrList[0] �/p�”;
echo “�p�Client Browser: $arrList[1] �/p�”;
echo “�p�Operating System: $arrList[2] �/p�”;
?�

The above script reads the cookie data and ‘explodes’ the obtained string into an array:

$strReadCookie � $_COOKIE[“AnotherCookie”];
$strList � explode (“::”, $strReadCookie);

Each element of the array is then displayed:

echo “�p�IP Address: $arrList[0] �/p�”;
echo “�p�Client Browser: $arrList[1] �/p�”;
echo “�p�Operating System: $arrList[2] �/p�”;

The output from the above script is illustrated in Figure 12.8.

354 CHAPTER 12 FILES

12

Multiple data from a cookieFIGURE 12.8

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 354

Sessions

Sessions are similar to cookies in that they serve basically the same purpose – to preserve
some data between pages on a web site. However, sessions differ from cookie in that they
are stored on the server (see Figure 12.9) and are thus more secure as there is no data being
passed back and forth between the client and the server. Furthermore, sessions work even
if a user has disabled cookies on the client browser.

Essentially, sessions allow variables and their values to be stored for each and every user.
The values of these variables can be different for every user and thus enable different users
to be assigned different preferences. Sessions work by assigning a visitor a unique id, known
as a session id. This is stored in a cookie by the user or is embedded as part of the URL.
A session id looks something like this:

sess_f231be97d46fb1ca96c1323e88f4523f

On the server, a session file is created with the same name. This file is used to store
the values of the variables assigned to the session. The contents of a session file may
look like this:

intCount|i:18;strName|s:5:”Simon”;

In the above example, ‘intCount’ is a variable, which has been stored in the session.
Variable ‘intCount’ is of type integer and contains the value 18. ‘strName’ is a variable of
type string and contains the value ‘Simon’.

Starting a session

To create a session the first thing that we need to do is to invoke the session_start() function:

session_start ()

12.3

12.3 SESSIONS 355

12

Sessions are stored on the serverFIGURE 12.9

PHP server

Data communication

Session

Client browser

Session data

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 355

The session_start() function checks whether a session has been created for this user and,
if not, creates one. If a session exists then all variables and their values are retrieved and
are available for use. The function always returns true.

Session variables are registered using the $_SESSION associative array. For example:

$_SESSION[“intCount”] � 0;

The above line of code registers a variable called ‘intCount’ with the session. The following
script provides an example of the use of a session variable:

�?php
// File: example12–16.php

session_start();

if (!$_SESSION[“intCount”])
$_SESSION[“intCount”] � 1;

else
$_SESSION[“intCount”]��;

echo “�p�You have accessed this page “ . $_SESSION[“intCount”] . “
times.�/p�”;
?�

The above script invokes the session_start() function to either create a new session or
access an existing one:

session_start();

If a variable ‘intCount’ has not been registered with the session, it is registered and set to 1:

if (!$_SESSION[“intCount”])
$_SESSION[“intCount”] � 1;

If the variable ‘intCount’ already exists, it is incremented by one:

else
$_SESSION[“intCount”]��;

The value of the variable is displayed on the page, as shown in Figure 12.10.

356 CHAPTER 12 FILES

12

Using a sessionFIGURE 12.10

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 356

The effect of this script is to create a user-specific counter that records the number of
accesses to the page that a particular user has made.

Session are like cookies in that they are part of the HTTP header, so the session-start()
function must be called before any output is sent to the browser. If you were to include all
of the correct DOCTYPE and header information in the above script, the creation of the
cookie still needs to come before it. Therefore the full ‘standard conforming’ script looks
like this:

�?php
// File: example12–17.php

session_start();

if (!$_SESSION[“intCount”])
$_SESSION[“intCount”] � 1;

else
$_SESSION[“intCount”]��;

?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

�?php
echo “�p�You have accessed this page “ . $_SESSION[“intCount”] . “
times.�/p�”;
?�

�/body�

�/html�

Using a session to set the page color

The following script illustrates the use of sessions to enable a user to set the colors used to
display a web page. These colors remain the same until the user alters them:

�?php
// File: example12–18.php

session_start();

if (!$_SESSION[‘strBgCol’])
$_SESSION[‘strBgCol’] � “blue”;

12.3 SESSIONS 357

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 357

if (!$_SESSION[‘strTextCol’])
$_SESSION[‘strTextCol’] � “yellow”;

if (isset($_POST[“submit”])) {
$strBgCol � $_POST[“strNewBgCol”];
$strTextCol � $_POST[“strNewTextCol”];
$_SESSION[‘strBgCol’] � $strBgCol;
$_SESSION[‘strTextCol’] � $strTextCol;

}
else {

$strBgCol � $_SESSION[‘strBgCol’];
$strTextCol � $_SESSION[‘strTextCol’];

}

?�

�head�

�style type�“text/css”�

body {background-color: �?php echo $strBgCol ?�}
p {color: �?php echo $strTextCol ?�}
h2 {color: �?php echo $strTextCol ?�}
�/style�

�/head�

�body�

�h2�What Colors would you like?�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”] ?�’ method�‘post’�

�p�

�label for�“strNewBgCol”�Background Color: �/label�

�select name�‘strNewBgCol’ id�‘strNewBgCol’�

�option�red�/option�

�option�green�/option�

�option�blue�/option�

�option�cyan�/option�

�option�yellow�/option�

�/select��/p�

�p�

�label for�“strNewTextCol”�Text Color: �/label�

�select name�‘strNewTextCol’ id�‘strNewTextCol’�

�option�red�/option�

�option�green�/option�

�option�blue�/option�

�option�cyan�/option�

�option�yellow�/option�

�/select�

�input type�‘submit’ name�‘submit’/�

�/p�

�/form�

�/body�

The script begins by registering a session:

session_start();

358 CHAPTER 12 FILES

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 358

Next, the two session variables are checked to see if they exist and, if not, two default
 values are created:

if (!$_SESSION[‘strBgCol’])
$_SESSION[‘strBgCol’] � “blue”;

if (!$_SESSION[‘strTextCol’])
$_SESSION[‘strTextCol’] � “yellow”;

If a form has been submitted (in other words, the user has altered the page’s colors), then
they are obtained:

if (isset($_POST[“submit”])) {
$strBgCol � $_POST[“strNewBgCol”];
$strTextCol � $_POST[“strNewTextCol”];
$_SESSION[‘strBgCol’] � $strBgCol;
$_SESSION[‘strTextCol’] � $strTextCol;

}

Otherwise, the values stored in the session variables are obtained:

else {
$strBgCol � $_SESSION[‘strBgCol’];
$strTextCol � $_SESSION[‘strTextCol’];

}

Inside the header section of the page, a style is defined:

�head�

�style type�“text/css”�

Styles are set for the background color of the page and the text colour of the ‘paragraph’
and ‘heading level 2’ elements:

body {background-color: �?php echo $strBgCol ?�}
p {color: �?php echo $strTextCol ?�}
h2 {color: �?php echo $strTextCol ?�}
�/style�

�/head�

The remainder of the script outputs the form which allows the user to change the page
 colors. The output from the script is illustrated in Figure 12.11.

Un-registering session variables

Session variables can be unregistered. You may wish to do this to ensure that the session
you have created is completely clear of any variable values. The unset() function clears a
variable currently registered with the session and has the following format:

unset(variableName);

12.3 SESSIONS 359

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 359

Uploading files from forms

We have shown in Chapter 10 that forms can be used to interact with the user. We intro-
duced the various form field elements which we can use in this interaction. However, at
that time we omitted to mention that there is an input ‘file’ type of element which allows
users to submit an entire file from their local computer along with any form data. Being
able to upload entire forms in this way is very powerful as it allows you to build dynamic
web pages in which users from any location on the web can submit a document to your
web server. What you do with this document when you have received it is up to you.

Creating the upload form

In addition to this extra input field type there are a few other changes we need to make to
our ‘form’ construct in order to perform file uploads. Firstly we must insert the attribute
‘enctype’ into the form element with the value ‘multipart/form-data’. This informs the
server that the form may contain an uploaded file:

�form enctype�‘multipart/form-data’ action�‘script’ method�‘post’�

The input ‘file’ field should be included to create an input field in which we can browse
for and select a file on the local machine to upload to the server. The format of this
 element is as follows:

�input type�‘file’ name�‘myFileName’/�

Finally, it is good practice to include the maximum file size in bytes using a hidden
field. In this field, the system variable MAX_FILE_SIZE is set to a certain value,
thus limiting the maximum size of files which can be uploaded. An example of this is
shown below:

�input type�‘hidden’ name�‘MAX_FILE_SIZE’ value�‘size’ /�

12.4

360 CHAPTER 12 FILES

12

Changing a page colorFIGURE 12.11

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 360

An example of a form with a file upload field is shown below:

�!––example12-19.htm ––�

�form enctype�‘multipart/form-data’ action�‘example12-19.php’ method�‘post’�

�p��input type�‘hidden’ name�‘MAX_FILE_SIZE’ value�‘100000’ /�

�label for�‘strFile’�Document File: �/label�

�input name�‘strFile’ type�‘file’ id � ‘strFile’/�

�input type�‘submit’ name�‘SubmitQuery’ /��/p�

�/form�

12.4 UPLOADING FILES FROM FORMS 361

12

Note that the above script contains no PHP and thus is saved with the
extension .htm.NOTE

File upload formFIGURE 12.12

The output from the above script is illustrated in Figure 12.12.

You can enter the name and location of the file to upload in the form field, or you can click
the Browse button to open a ‘choose a file window’ and locate and select the file to upload.
This window is shown in Figure 12.13.

However, clicking on the submit button simply causes an error at this time as we haven’t
written the PHP script to handle the receipt of the file.

Creating the PHP upload script

There are many potential risks with scripts which access uploaded files. The potential for
viruses and other malicious programs exists. In an attempt to overcome this, PHP file
uploads have to undergo a number of steps to ensure their authenticity. Figure 12.14
 illustrates these steps.

When a file is uploaded via a form, the file is stored in a temporary location. This location
depends on your computer operating system. The file is stored using a temporary name
created by PHP. A couple of environment variables are created to store the temporary

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 361

name of the file and the real name of the file. PHP contains some functions which enable
you to determine if the temporary file was indeed uploaded via a PHP form and if so allow
you to move the file to its final resting place with its original name.

We shall now examine the PHP statements which we need to implement to ensure that
these steps are performed correctly. When the file is uploaded, the name assigned to the
form field (in the previous example it was ‘strFile’) is used to store the temporary and real
names of the files in an environment variable array called $_FILES.

362 CHAPTER 12 FILES

12
Uploading a file with PHPFIGURE 12.14

Temporary file
read

Temporary file
stored

File uploaded

PHP page
sent to PHP
Interpreter

File copied and
renamed

Server finds
PHP web page

PHP
Interpreter

Web server
software

HTML & PHP
web pages

File browser windowFIGURE 12.13

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 362

The temporary file name and real file name can be accessed like this:

$strFilename � $_FILES[‘strFile’][‘tmp_name’];
$strRealname � $_FILES[‘strFile’][‘name’];

It is important to access this information as we need to use it to check whether this is a gen-
uine file, which was uploaded correctly. To do this we use the is_uploaded_file() function:

is_uploaded_file(filename);

The is_uploaded_file() function returns a value of 1 if the file is a valid uploaded file,
 otherwise it returns a zero. If the file is genuine then it can be moved and renamed using
the move_uploaded_file() function:

move_uploaded_file(filename, destination);

This function requires two parameters, which specify the temporary filename followed by
the location to move the file and the name to store it as. Let us examine a simple example
to show that these functions work as expected:

�?php
// File: example12–20.php

$strFilename � $_FILES[‘strFile’][‘tmp_name’];
$strRealname � $_FILES[‘strFile’][‘name’];

if (is_uploaded_file($strFilename))
if (move_uploaded_file($strFilename, “uploaded/$strRealname”))

echo “�p�File uploaded successfully�/p�”;
else

echo “�p�Error: File not moved successfully!�/p�”;
else

echo “�p�Error: Not an uploaded file!�/p�”;
?�

The script begins by assigning the name of the temporary file name to $strFilename and its
original real file name to $strRealname:

$strFilename � $_FILES[‘strFile’][‘tmp_name’];
$strRealname � $_FILES[‘strFile’][‘name’];

Next, an ‘if ’ statement is used in conjunction with the is_loaded_file() function to check
if the file is a valid upload or not:

if (is_uploaded_file($strFilename))

If the file is not a valid upload then the following message is displayed:

else
echo “�p�Error: Not an uploaded file!�/p�”;

Otherwise another ‘if ’ statement combined with the move_uploaded_file() function
moves the file from the temporary location to its permanent location along with its

12.4 UPLOADING FILES FROM FORMS 363

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 363

 original file name:

if (move_uploaded_file($strFilename, “uploaded/$strRealname”))

If the file could not be moved for whatever reason then an error message is displayed:

else
echo “�p�Error: File not moved successfully!�/p�”;

Okay, so how do we access the file when we have copied it up? Well, we can browse to its
location and view the file or we could write a small script to access the uploaded file.

364 CHAPTER 12 FILES

12

If you are uploading to a UNIX computer then your upload path is
 likely to be different to that shown above.NOTE

Viewing the uploaded file

To allow us to view the files we have uploaded we are first going to amend our previous
PHP script so that in addition to moving the file into the ‘uploaded’ sub-directory, we also
record in a simple text file the name of the file which has been uploaded. We shall use this
information in our viewing script. Here is the amended script:

�?php
// File: example12–21.php

$strFilename � $_FILES[‘strFile’][‘tmp_name’];
$strRealname � $_FILES[‘strFile’][‘name’];

if (is_uploaded_file($strFilename))
if (move_uploaded_file($strFilename, “uploaded/$strRealname”)) {

echo “�p�File uploaded successfully�/p�”;
$fileTextFile � fopen (“uploadedfiles.txt”,’a’);
fwrite($fileTextFile, “$strRealname\r\n”);
if (!fclose($fileTextFile))

echo “�p�Error closing file!�/p�”;
}

else
echo “�p�Error: File not moved successfully!�/p�”;

else
echo “�p�Error: Not an uploaded file!�/p�”;

?�

You will need to change script ‘example12–19.htm’ so that the form calls this script
(‘example12–21.php’) in order for this to work correctly.

The amendments to the script are all within the ‘if ’ construct which checks to see if the
file has been successfully moved. A file is opened for appending and the name of the

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 364

uploaded file is written before the file is closed:

$fileTextFile � fopen (“uploadedfiles.txt”,’a’);
fwrite($fileTextFile, “$strRealname\r\n”);
if (!fclose($fileTextFile))

echo “�p�Error closing file!�/p�”;

The script now provides us with a list of files which have been uploaded. We can now write
a simple script which allows us to see and view the files:

�?php
// File: example12-22.php

$fileTextFile � fopen (“uploadedfiles.txt”,’r’);

echo “�h1�The following files have been uploaded�/h1�”;
while (!feof($fileTextFile)) {

$strLine � fgets($fileTextFile);
echo “�p��a href�‘uploaded/$strLine’�$strLine�/a��/p�”;

}

if (!fclose($fileTextFile))
echo “�p�Error closing file!�/p�”;

?�

The script is very simple. It opens the ‘uploadedfiles.txt’ file:

$fileTextFile � fopen (“uploadedfiles.txt”,’r’);

Using a ‘while’ construct, it displays all the files uploaded:

while (!feof($fileTextFile)) {
$strLine � fgets($fileTextFile);
echo “�p��a href�‘uploaded/$strLine’�$strLine�/a��/p�”;

}

The output from the above script looks something like that shown in Figure 12.15. Try
clicking on the uploaded file links to see what happens.

12.4 UPLOADING FILES FROM FORMS 365

12

File upload viewerFIGURE 12.15

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 365

Emailing users

Email has become one of the key means of electronic communication. PHP includes
 function support for email creation and interactivity. In this section, we introduce the
mail() function which is widely used within PHP scripts in order to send raw text, HTML
and mime-type messages to one or more recipients at the same time. E-mail messages can
be thought of as data streams (or files, if you like) and that is why we have included them
in this lesson.

In addition to demonstrating how to use this function in its basic form, we shall also
 examine some of the mail() function’s more advanced features.

Sending e-mail with PHP is very simple. In order to do it, we use the mail() function. This
allows us to transmit the message from a source mail server to a target email account on
the same or another mail server. In order to successfully use this function you must have
access to a mail server.

The mail client that is to be used is defined within the php.ini file. By default the section
of the php.ini file appropriate to mail is follows:

[mail function]
; For Win32 only.
SMTP � localhost

Depending on whether your PHP server is running on a UNIX or a Windows environment
determines how you should configure this file. In the case of a Windows user, you must
configure the location of your SMTP mail server and your email address. If you have a
Google mail account then the address of your SMTP server is:

smtp.gmail.com

If you have a UK Yahoo! mail account it is:

smtp.mail.yahoo.co.uk

Change the php.ini file so that the SMTP is changed from ‘localhost’ to your SMTP mail
server and save the file.

UNIX users need to enter the location of their sendmail application which is normally
‘/usr/bin/sendmail’. You should consult your service provider to find out the settings you
need for your SMTP mail server to replace the default ‘localhost’.

Sending a simple mail message

The mail() function can be used to construct a simple mail message. The format of the
mail() function is as follows:

mail (to, subject, message, headers)

12.5

366 CHAPTER 12 FILES

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 366

The mail() function consists of four attributes. The first attribute is used to specify the
destination mail account where the message should be sent. The second attribute is the
text which appears in the subject line of the message. The third attribute is the text which
appears in the body of the message. Finally, the fourth attribute can be used to specify
additional headers. Multiple extra headers are separated with carriage return and new-line
characters (\r\n). The two main headers which concern us are the ‘From:’ header which
specifies the real email address of the message we wish to send. Secondly, the ‘Reply-To:’
header specifies the reply address shown when the recipient clicks on the email message
to send a reply. The following script illustrates the use of the mail function:

�?php
// File: example12–23.php

$strEmail � “simon.stobart@sunderland.ac.uk”;
$strSubject � “Hello”;
$strMessage � “Hello Simon, how are you?”;

$strHeaders � “From: simon.stobart@sunderland.ac.uk\r\n”;
$strHeaders . � “Reply-To: simon.stobart@sunderland.ac.uk”;

mail($strEmail, $strSubject, $strMessage, $strHeaders);
echo “�p�Message sent�/p�”;
?�

The script begins by defining the recipient of the email, its subject and the message:

$strEmail � “simon.stobart@sunderland.ac.uk”;
$strSubject � “Hello”;
$strMessage � “Hello Simon, how are you?”;

It then defines two headers which specify the from and reply-to parts of the email:

$strHeaders � “From: simon.stobart@sunderland.ac.uk\r\n”;
$strHeaders .� “Reply-To: simon.stobart@sunderland.ac.uk”;

Finally, invoking the mail() function creates the email and sends it on its way:

mail($strEmail, $strSubject, $strMessage, $strHeaders);

The output from the above script generated on the web page is:

Message sent

However, illustrated in Figure 12.16 is the email that is produced.

Sending (X)HTML email messages

PHP allows us to create more complex emails which, instead of simply including raw text,
allow us to insert (X)HTML code into the message part of the email. Inserting (X)HTML
allows us to have far greater control over the look and feel of the e-mail which is sent.
However, it is important to note that not all email clients support (X)HTML emails and
even for those that do, many individuals choose to turn off this facility.

12.5 E-MAILING USERS 367

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 367

Simply including (X)HTML elements in the message body is not the end of the story
 however. To make this work we also need to include some additional header information,
like this:

$headers � “MIME-Version: 1.0\r\n”;
$headers .� “Content-type: text/html; charset�iso-8859–1\r\n”;

MIME stands for multipurpose Internet mail extensions. MIME extends the format of
Internet mail to allow more sophisticated non-text-based e-mail messages. The e-mail
client needs to know what version of MIME we are using so the MIME header defines the
MIME version. The Content-type header is a mandatory header which specifies the
 format of the message body (in this case text and html) and the character set being used.
The following script illustrates an example of a script creating an (X)HTML email message:

�?php
// File: example12–24.php

$strEmail � “simon.stobart@sunderland.ac.uk”;
$strSubject � “Sales Figures”;
$strMessage � “
�html�

�head�

�style type�‘text/css’�

body {background-color: white}
tr {color: white;

background-color: blue}
h1 {color: black}
�/style�

�/head�

�body�

�div align�\”center\”�

368 CHAPTER 12 FILES

12

A simple emailFIGURE 12.16

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 368

12.5 E-MAILING USERS 369

12

�h1�Weekly Sales Figures�/h1�

�table width�\”385\”�

�tr�

�td�Mon�/td��td�Tue�/td��td�Wed�/td��td�Thu�/td��td�Fri�/td�

�/tr�

�tr�

�td�£100,000�/td��td�£89,000�/td��td�£67,000�/td��td�£120,400�/td��td�

£101,800�/td�

�/tr�

�/table�

�/div�

�/body�

�/html�

“;

$strHeaders � “MIME-Version: 1.0\r\n”;
$strHeaders .� “Content-type: text/html; charset�iso-8859–1\r\n”;
$strHeaders .� “From: simon.stobart@sunderland.ac.uk\r\n”;
$strHeaders .� “Reply-To: simon.stobart@sunderland.ac.uk”;
echo “�p�Message sent�/p�”;
mail($strEmail, $strSubject, $strMessage, $strHeaders);
?�

The above script begins by defining the recipient of the email and the email subject:

$strEmail � “simon.stobart@sunderland.ac.uk”;
$strSubject � “Sales Figures”;

The message is created with (X)HTML elements:

$strMessage � “
�html�

�head�

�style type�‘text/css’�

body {background-color: white}
tr {color: white;

background-color: blue}
h1 {color: black}
�/style�

�/head�

�body�

�div align�\”center\”�

�h1�Weekly Sales Figures�/h1�

�table width�\”385\”�

�tr�

�td�Mon�/td��td�Tue�/td��td�Wed�/td��td�Thu�/td��td�Fri�/td�

�/tr�

�tr�

�td�£100,000�/td��td�£89,000�/td��td�£67,000�/td��td�£120,400�/td��td�

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 369

£101,800�/td�

�/tr�

�/table�

�/div�

�/body�

�/html�

“;

Next, the special MIME headers are included:

$strHeaders � “MIME-Version: 1.0\r\n”;
$strHeaders .� “Content-type: text/html; charset�iso-8859–1\r\n”;

These are followed by the from and reply-to headers:

$strHeaders .� “From: simon.stobart@sunderland.ac.ukr\n”;
$strHeaders .� “Reply-To: simon.stobart@sunderland.ac.uk”;

Finally, the message is sent:

mail($strEmail, $strSubject, $strMessage, $strHeaders);

The output from the above script generated on the web page is:

Message sent

However, illustrated in Figure 12.17 is the email that is produced.
FIGURE 12.17

370 CHAPTER 12 FILES

12

An (X)HTML emailFIGURE 12.17

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 370

REFERENCES AND FURTHER READING 371

Exercises

12.1 Write a script which reads a text file, character by character, and write these
 characters to a new file, thus making a copy of the original.

12.2 Write a script which amends ‘example12-19.php’ so that it uses a form interface for
the user to supply the name and location of the file to check for its existence.

12.3 Write a script which uses sessions to allow the user to control the percentage size of
the ‘paragraph’ and ‘heading level 2’ text. The script should use a form to allow the
user to select 50%, 75%, 100%, 125% and 150% text font sizes.

12.4 Write a script which allows users to upload word-processed documents to a directory
and then allows users to view the list of uploaded documents. You can assume that a
word-processed document has the extension .‘doc’ and you need to check for this.

In this chapter, we began by introducing the concept of files. We explained what a file is
and how they can be created. We illustrated how data in files can be read and how files
can be a useful means of storing information in the long term. Next we introduced
 cookies and sessions within the PHP environment and explained that, while these are
files, they have very specific and important roles. We examined how files can be
uploaded to the server using a form interface. We concluded by examining how e-mails
can be created from with PHP.

SUMMARY

References and further reading

Brain, M. Cookies. http://www.howstuffworks.com/cookie.htm
Ratschiller, T. (2000) Session Handling with PHP4. http://devzone.zend.com/node/view/id/1312
Yank, K. (2002) Advanced Email in PHP http://www.sitepoint.com/article/advanced-email-php
Wikipedia. Computer Files. http://en.wikipedia.org/wiki/Computer_file

12

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 371

Stobart-12.qxp:Stobart-12 11/6/07 9:22 PM Page 372

373

CHAPTER 13

Functions, Dates and Times and
Redirection

LEARNING OBJECTIVES

● To understand what functions are and how to create them

● To understand the concept of variable scope

● To be able to pass arguments to functions

● To be able to use default arguments with functions

● To be able to return a value from a function

● To understand the difference between passing by value and passing by
reference

● To understand what ‘includes’ and ‘requires’ allow you to achieve

● To be able to obtain the time and date

● To be able to produce and use a random number

● To understand how to check a page’s referral page

● To understand how to redirect a user to a new page

In this chapter, we firstly examine how to create our own functions. In many of our previous script
examples we have used functions which have been written by someone else and provided as part
of the PHP function library. It is now time for us to learn how to create our own and see some
examples of why they are so powerful. Next we look at file includes. These allow us to divide up
a PHP script into separate parts and include only those we wish to use in the current situation.

Then we introduce dates, times and random numbers and explain why they are so powerful and
assist us in developing creative and useful scripts. Next, we examine how to check the name of

INTRODUCTION

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 373

374 CHAPTER 13 FUNCTIONS

13

the web page which is invoking the new script. This is a very important security feature as we can
ensure that login security is not easily bypassed. Finally, we learn how to redirect a user from one
web page to another.

Functions

A function is a block of script which is invoked only when the function is called. If
the function is never invoked, the script associated with the function is never executed.
Functions are very powerful as they allow us to break up our code into modular chunks
and thus aid script design. As a function can be invoked as many times as you wish from
any point in your script they also help reduce the amount of code required to be written
for an application as the code within a function can be ‘reused’ time and time again within
the script. We have used functions before throughout many of our examples previously, but
these were functions written by others for us to use. We are going to learn how to create
our own functions. The great thing is that they operate in exactly the same way as the
 functions you have been using and, once written, you can share them with others to
make their programming life easier in the same way that the PHP developers shared their
function library with you.

We know that all functions can receive a number of arguments which are passed to the
function for processing. We also know from our past use of defined functions that a
 function can return us a single function. This is illustrated in Figure 13.1.

Functions do not have to receive any arguments nor do they have to return a value. They
can simply consist of user-defined PHP statements.

User-defined functions

When we wish to define our own function we need to do this using the ‘function’ keyword
and the following syntax:

function name (arguments . . .) {

. . .

. . .

}

A function is defined with the keyword ‘function’ followed by the unique name of the
function. Every function has to have a unique name. The function name is then followed

13.1

Function invocationFIGURE 13.1

Return value

Arguments
Script

Function

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 374

We shall examine how functions ‘return’ a value a little later. However, for now let us
examine how to create a function:

�?php
// File: example13-1.php

echo “�p�Fahrenheit To Celsius�/p�”;

function fahrenheitToCelsius() {
$floFahrenheit � 212;
$floCelsius � (5/9)*($floFahrenheit-32);
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;

}
?�

The above script defined a function called fahrenheitToCelsius() which receives no
 arguments. The associated script within the function converts a Fahrenheit temperature
value into a Celsius one. However, when we run the script, the code within the function
is not processed. The reason is that we haven’t invoked the function. In the above script,
we would do this with the call:

fahrenheitToCelsius();

So, for example:

�?php
// File: example13-2.php

echo “�p�Fahrenheit To Celsius�/p�”;

function fahrenheitToCelsius() {
$floFahrenheit � 212;
$floCelsius � (5/9)*($floFahrenheit-32);
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;

}

fahrenheitToCelsius();
?�

The output from the above script is:

212�F � 100�C

13.1 FUNCTIONS 375

13

by a pair of parentheses which enclose a comma-separated list of arguments (if there
are any). The script statements making up the function are enclosed within braces.

Even if there are no arguments to a function then the parentheses still
need to be included.NOTE

In PHP, it doesn’t matter if the function is defined before or after the
function invocation!NOTE

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 375

Variables and scope

You will note that the example function declares the value of $floFahrenheit within the
function. This is not very practical as the function will always perform the same calculation.
What we need is to define the value of $floFahrenheit outside the function so that we can
adjust it, for example like this:

�?php
// File: example13-3.php

echo “�p�Fahrenheit To Celsius�/p�”;

function fahrenheitToCelsius() {
$floCelsius � (5/9)*($floFahrenheit-32);
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;

}

$floFahrenheit � 212;
fahrenheitToCelsius();
?�

In the above example the value of $floFahrenheit is defined outside the function:

$floFahrenheit � 212;
fahrenheitToCelsius();

Unfortunately the output from the function doesn’t work as it gives a weird:

oF � -17.7777777778oC

You may also get a couple of warning notices like this:

Notice: Undefined variable: floFahrenheit in
C:\wamp\www\PHPLessonExamples\Lesson13\example13-3.php

You can try moving the variable declaration and function call before the function like this:

�?php
// File: example13-4.php

echo “�p�Fahrenheit To Celsius�/p�”;

$floFahrenheit � 212;
fahrenheitToCelsius();

function fahrenheitToCelsius() {
$floCelsius � (5/9)*($floFahrenheit-32);
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;

}
?�

Unfortunately it still doesn’t work and more warning notices may appear! The reason for
this is the way functions have been designed to work. Functions are designed to be isolated
from the rest of the script. Variables which are declared outside a function are not visible

376 CHAPTER 13 FUNCTIONS

13

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 376

inside a function. This is known as a variable’s scope. Interestingly, a variable defined inside
a function is not available outside the function either!

13.1 FUNCTIONS 377

13

Variables have a scope and this is generally inside a function or
 outside one!NOTE

Consider the following script:

�?php
// File: example13-5.php

echo “�p�Fahrenheit To Celsius�/p�”;
function fahrenheitToCelsius() {

$floFahrenheit � 212;
$floCelsius � (5/9)*($floFahrenheit-32);

}

fahrenheitToCelsius();
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;
?�

In the above script we have modified our previous example so that the echo statement dis-
playing the conversion is outside the function. However, both the original value of
$floFahrenheit and the calculated value of $floCelsius are within the function and so it
should be of no surprise that the output is:

oF � oC

Yes, you have guessed it, the script still doesn’t work and warning notices may appear! In
fact variable scope means that we can do things like this:

�?php
// File: example13-6.php

echo “�p�Fahrenheit To Celsius�/p�”;

function fahrenheitToCelsius() {
$fltFahrenheit � 212;
$fltCelsius � (5/9)*($fltFahrenheit-32);
echo “�p�$fltFahrenheit^oF � $fltCelsius^oC�/p�”;

}

$fltFahrenheit � 100;
fahrenheitToCelsius();
echo “�p�$fltFahrenheit^oF �/p�”;
?�

In the above example we declare a variable $fltFahrenheit and assign it the value 100:

$fltFahrenheit � 100;

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 377

We then invoke the function fahrenheitToCelsius():

fahrenheitToCelsius();

Finally, we display the value of $fltFahrenheit:

echo “�p�$fltFahrenheit^oF �/p�”;

The output from the above script is illustrated in Figure 13.2. What this shows us is that
although we have a variable called $fltFahrenheit declared outside the function and a
 variable with the same name declared inside a function they are treated as two completely
separate variables and each has its values maintained.

In order to advance the use of functions, we need some means to allow functions to see
variable values from outside the function. The method for accomplishing this is through
the use of function arguments.

Creating a function with an argument

Arguments are used to pass values to functions. These can either be constants or variables
declared outside of the function. Here is an example of our script modified to include an
argument:

�?php
// File: example13-7.php

echo “�p�Fahrenheit To Celsius�/p�”;

function fahrenheitToCelsius($floFahrenheit) {
$floCelsius � (5/9)*($floFahrenheit-32);
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;

}

fahrenheitToCelsius(100);
?�

There are two main differences to be aware of in the above script. The first is in the func-
tion definition, where the parentheses now surround the name of a variable called

378 CHAPTER 13 FUNCTIONS

13

Variable scopeFIGURE 13.2

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 378

$floFahrenheit. This indicates that the function expects to receive a value when it is
invoked, which it will store in the variable $floFahrenheit:

function fahrenheitToCelsius($floFahrenheit) {

The second difference is the function invocation which now includes a constant value to
pass to the function:

fahrenheitToCelsius(100);

The result of the above script is a correct:

100oF � 37.7777777778oC

We can rewrite the script slightly to prove that we can pass a variable value:

�?php
// File: example13-8.php

echo “�p�Fahrenheit To Celsius�/p�”;

function fahrenheitToCelsius($floFahrenheit) {
$floCelsius � (5/9)*($floFahrenheit-32);
echo “�p�$floFahrenheit^oF � $floCelsius^oC�/p�”;

}

$floFahrenheitOne � 100;
fahrenheitToCelsius($floFahrenheitOne);
?�

The above script illustrates two important things. Firstly that we can pass a variable directly
to a function:

fahrenheitToCelsius($floFahrenheitOne);

However, it also indicates that the name of a variable passed to a function doesn’t have to
be the same as the argument the function receives:

function fahrenheitToCelsius($floFahrenheit) {

13.1 FUNCTIONS 379

13

When a function receives a value, it copies this into its argument and
so it doesn’t matter what name it is given.NOTE

Multiple arguments

Functions can be written to accept multiple arguments. The following script illustrates this
by making our temperature conversion function a little more flexible. The function is now
able to accept two arguments and make conversions either way between Celsius and
Fahrenheit:

�?php
// File: example13-9.php

echo “�p�Temperature Converter�/p�”;

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 379

function temperatureConvert($floTemp, $strType) {
if ($strType �� “F”) {

$floCelsius � (5/9)*($floTemp-32);
echo “�p�$floTemp^oF � $floCelsius^oC�/p�”;

}
else {

$floFahrenheit � (9/5)*$floTemp�32;
echo “�p�$floTemp^oC � $floFahrenheit^oF�/p�”;

}
}
temperatureConvert(100, “F”);
temperatureConvert(100, “C”);
?�

The above script contains a function which is designed to receive two arguments. The first
is the temperature value to be converted and the second a string indicating the type of
 temperature value being passed:

function temperatureConvert($floTemp, $strType) {

If the temperature value is ‘F’ then the conversion to Celsius is performed:

if ($strType �� “F”) {
$floCelsius � (5/9)*($floTemp-32);
echo “�p�$floTemp^oF �

$floCelsius^oC�/p�”;
}

Otherwise the conversion to Fahrenheit is performed:

else {
$floFahrenheit � (9/5)*$floTemp�32;
echo “�p�$floTemp^oC � $floFahrenheit^oF�/p�”;

}

The output from the above script is illustrated in Figure 13.3.

380 CHAPTER 13 FUNCTIONS

13

Multi-argument functionFIGURE 13.3

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 380

We can adapt the above script to illustrate that we can invoke functions from within a loop
construct:

�?php
// File: example13-10.php

function temperatureConvert($floTemp, $strType) {
if ($strType �� “F”) {

$floCelsius � (5/9)*($floTemp-32);
echo “�p�$floTemp^oF � $floCelsius^oC�/p�”;

}
else {

$floFahrenheit � (9/5)*$floTemp�32;
echo “�p�$floTemp^oC � $floFahrenheit^oF�/p�”;

}
}

echo “�h2�Some nice holiday temperatures:�/h2�”;
for($intCount�25;$intCount�40;$intCount��)

temperatureConvert($intCount, “C”);
?�

The output from the above script is illustrated in Figure 13.4.

Default arguments

Sometimes it is useful if functions have default arguments. This allows us to invoke a function
without the need to pass all the arguments to it if we don’t want to. Default arguments are
assigned in the function declaration. Consider the following script which modifies our
 previous temperature conversion function. The modification assumes that if only the
 temperature is sent then the temperature type is Celsius.

�?php
// File: example13-11.php

function temperatureConvert($floTemp, $strType � “C”) {
if ($strType �� “F”) {

$floCelsius � (5/9)*($floTemp-32);
echo “�p�$floTemp^oF �

$floCelsius^oC�/p�”;
}
else {

$floFahrenheit � (9/5)*$floTemp�32;
echo “�p�$floTemp^oC �

$floFahrenheit^oF�/p�”;
}

}
echo “�h2�Some nice holiday temperatures:�/h2�”;
for($intCount�25;$intCount�40;$intCount��)

temperatureConvert($intCount);
?�

Note that only one of the function arguments has a default value:

function temperatureConvert($floTemp, $strType � “C”) {

13.1 FUNCTIONS 381

13

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 381

Also, note that the function invocation no longer specifies the temperature type:

temperatureConvert($intCount);

The output for the above script is the same as that shown in Figure 13.4. In some of our
examples of user-defined functions, we have shown that we can pass values to the function
and these can be used to affect the functionality of the function itself. What we have not
yet seen is how we can return a value from a function.

Returning a value

The keyword ‘return’ is used to return a value from a function:

return value;

382 CHAPTER 13 FUNCTIONS

13

Functions in loopsFIGURE 13.4

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 382

The function returns control to the location where it was invoked from when the keyword
‘return’ is encountered. Let us modify our script to illustrate a function return:

�?php
// File: example13-12.php

function temperatureConvert($floTemp, $strType � “C”) {
if ($strType �� “F”)

$floAnswer � (5/9)*($floTemp-32);
else

$floAnswer � (9/5)*$floTemp�32;
return $floAnswer;

}

echo “�h2�Some nice holiday temperatures:�/h2�”;
for($intCount�25;$intCount�40;$intCount��) {

$floFahrenheit � temperatureConvert($intCount);
echo “�p�$intCount^oC �

$floFahrenheit^oF�/p�”;
}
?�

The above script is a rewrite of the temperatureConvert() function so that it uses the
 keyword ‘return’ to return the answer to the temperature conversion:

return $floAnswer;

The ‘for’ loop invoking the function is also slightly modified so that the value returned
from the function is stored in a variable $floFahrenheit:

for($intCount � 25;$intCount�40;$intCount��) {
$floFahrenheit � temperatureConvert($intCount);
echo “$intCount^oC � $floFahrenheit^oF�/br�”;

}

The output from the above script is the same as that in Figure 13.4.

13.1 FUNCTIONS 383

13

When the function has executed the flow of control of the program it
returns to the point in the script immediately after where it was called.NOTE

It is possible to directly output the value returned from a function. Consider this
 modification to the above script:

�?php
// File: example13-13.php

function temperatureConvert($floTemp, $strType � “C”) {
if ($strType � � “F”)

$floAnswer � (5/9)*($floTemp-32);
else

$floAnswer � (9/5)*$floTemp�32;

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 383

return $floAnswer;
}
echo “�h2�Some nice holiday temperatures:�/h2�”;
for($intCount�25;$intCount�40;$intCount��)

echo “�p�$intCount^oC � “ . temperatureConvert($intCount) .
“^oF�/p�”;

?�

The only difference between the above script and ‘example13-12.php’ is that the echo
construct and function call have been combined:

echo “$intCount�sup�o�/sup�C � “ . temperatureConvert($intCount) .
“�sup�o�/sup�F�/br�”;

Returning more than one value

We mentioned previously that functions within PHP cannot return more than one value.
What is more correct is that they can return only a single type. Arrays can be used to ‘get
around’ the issue of functions being able to return a single value.

The following script illustrates the use of an array to return more than one ‘item’ from a
function:

�?php
// File: example13-14.php

function temperatureConvert($floTemp, $strType � “C”) {
if ($strType �� “F”)

$floAnswer � (5/9)*($floTemp-32);
else

$floAnswer � (9/5)*$floTemp�32;

$arrResult � array();
$arrResult[] � $floAnswer;
$arrResult[] � $strType;
return $arrResult;

}
echo “�h2�Some nice holiday temperatures:�/h2�”;
$floCelsius � 99.9;
$arrResult � temperatureConvert($floCelsius);
echo “�p�$floCelsiuso” . $arrResult[1] . “ � “ .

$arrResult[0] . “�sup�o�/sup�F�/p�”;
?�

In this script the function temperatureConvert declares an array and assigns into
the array the values of $floAnswer and $strType. The array is then returned from the
function:

$arrResult � array();
$arrResult[] � $floAnswer;
$arrResult[] � $strType;
return $arrResult;

384 CHAPTER 13 FUNCTIONS

13

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 384

The function invocation receives the returned value from the function (which is an array)
and accesses each of the values within the array:

$arrResult � temperatureConvert($floCelsius);
echo “�p�$floCelsius�sup�o�/sup�” . $arrResult[1] . “ � “ .
$arrResult[0] . “�sup�o�/sup�F�/p�”;

The output from the above script is illustrated in Figure 13.5.

Arguments passed by value

All of our examples of passing arguments to functions thus far are examples of passing
by value. This means that a copy of the variable is passed. If that value is changed in
the function, the value of the variable outside the function remains unchanged. Therefore
this script:

�?php
// File: example13-15.php

function reverseIt($strString) {
$strString � strrev($strString);

}

$strName � “Simon”;
echo “�p�$strName “;
reverseIt($strName);
echo “reversed is $strName�/p�”;
?�

doesn’t work as intended and produces the output:

Simon reversed is Simon

Arguments passed by reference

PHP supports passing a variable to a function ‘by reference’. To pass a variable by reference,
we simply include the character & before the variable name in the function definition. The

13.1 FUNCTIONS 385

13

‘Multiple’ return valuesFIGURE 13.5

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 385

passing of variables by reference permits the function to modify the original variable value.
Consider the example below:

�?php
// File: example13-16.php

function reverseIt(&$strString) {
$strString � strrev($strString);

}
$strName � “Simon”;
echo “�p�$strName “;
reverseIt($strName);
echo “reversed is $strName�/p�”;
?�

The above script outputs the following:

Simon reversed is nomiS

Calling functions within functions

Functions can invoke functions from within themselves. Consider the following script:

�?php
// File: example13-17.php

function decimal($floNum) {
$intNum � round($floNum, 2);

return $floNum;
}

function multiply($floNumber) {
$floNumber *� 3.12;
echo “�p�$floNumber�/p�”;
$floNumber � decimal($floNumber);
echo “�p�$floNumber�/p�”;

}

$floNumber � 5.2234;
multiply($floNumber);
?�

In this script a floating point number is defined and passed to function multiply():

$floNumber � 5.2234;
multiply($floNumber);

The function multiplies the number by 3.12 and then displays its current value:

$floNumber *� 3.12;
echo “�p�$floNumber�/p�”;

386 CHAPTER 13 FUNCTIONS

13

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 386

It then invokes function decimal(), passing it the value of $floNumber and assuming that
the value is returned. Finally the number is displayed:

$floNumber � decimal($floNumber);
echo “$floNumber”;

Function decimal() receives the variable and using a predefined function round() rounds
the value to two decimal places and returns this value:

function decimal($floNum) {
$floNum � round($floNum, 2);

return $floNum;
}

The output from the above script is illustrated in Figure 13.6.

Recursive functions

A recursive function is one which calls itself. Recursive functions are useful in evaluating
certain types of mathematical functions. The following example is a recursive function
used to calculate whether a number is a power of 2:

�?php
// File: example13-18.php

function isPowerOfTwo($intNumber) {
if ($intNumber �� 1)

return “�p�yes�/p�”;
elseif ($intNumber%2 �� 1)

return “�p�no�/p�”;
else {

$intNumber /� 2;
return isPowerOfTwo($intNumber);

}
}

echo isPowerOfTwo(256) ;
?�

13.1 FUNCTIONS 387

13

Output from a function calling another functionFIGURE 13.6

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 387

388 CHAPTER 13 FUNCTIONS

13

In this example, the number 256 is checked to see if it is a power of two or not by pass-
ing it to the isPowerOfTwo() function:

echo isPowerOfTwo(256) ;

When the function is invoked an if statement checks to see if the number is equal to one.
If so the value ‘yes’ is displayed. If not then another if statement is used to check if the
remainder of dividing the current value of $n by 2 is equal to 1. If this is true then the value
‘no’ is displayed:

if ($intNumber �� 1)
return “�p�yes�/p�”;

elseif ($intNumber%2 �� 1)
return “�p�no�/p�”;

If the number does not satisfy either of these statements then it is divided by 2 and the
function calls itself (by using the return keyword) and the process is repeated:

$intNumber /� 2;
return isPowerOfTwo($intNumber);

In this example the output generated is:

yes

Separating source files

Functions allow us to divide up our code into manageable pieces; however another way of
dividing up code is to separate up a large PHP script into several smaller ones. This allows
you to share and reuse parts of your scripts more easily.

Consider the following script:

�?php
// File: example13-19.php

function temperatureConvert($floTemp, $strType � “C”) {
if ($strType �� “F”) {

$floCelsius � (5/9)*($floTemp-32);
echo “�p�$floTemp�sup�o�/sup�F �

$floCelsius�sup�o�/sup�C�/p�”;
}
else {

$floFahrenheit � (9/5)*$floTemp�32;
echo “�p�$floTemp�sup�o�/sup�C �

$floFahrenheit�sup�o�/sup�F�/p�”;
}

}
?�

13.2

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 388

The above script is simply the temperatureConvert() function from a previous example.
Now consider:

�?php
// File: example13-20.php

include_once (“example13-19.php”);

echo “�h2�Some nice holiday temperatures:�/h2�”;
for($intCount�25;$intCount�40;$intCount��)

temperatureConvert($intCount);
?�

The above script uses the ‘include_once’ statement to include a copy of the
‘example13-19.php’ script at the point indicated. The output from this script is the same
as shown in Figure 13.4.

13.3 GETTING THE TIME AND DATE 389

13

The difference between ‘include’ and ‘include_once’ is that
‘include_once’ will only include the file once even if asked to include it
a second time.

NOTE

The ‘require’ and ‘require-once’ statements operate in exactly the same way as the
‘include’ and ‘include_once’ statements operate. The only difference is in how they handle
failure. With ‘require’ and ‘require_once’, if a file is not located then a fatal error is generated
and execution of the script is terminated.

Getting the time and date

Being able to access the system time and date is a very useful ability. Dates and times can
be used for a variety of tasks, from the simple activity of being able to display the correct
date and time on your web page to creating a time stamp of when a database record was
created.

Both the date and time can be accessed through a single function called getdate():

array�getdate();

The getdate() function returns an array containing the current date and time. The array is
a string-indexed array and the index values are described in Table 13.1.

The following script illustrates accessing the date using the getdate() function:

�?php
// File: example13-21.php

$arrDate � getdate();

$intSeconds � $arrDate[‘seconds’];
$intMinutes � $arrDate[‘minutes’];

13.3

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 389

$intHours � $arrDate[‘hours’];
$intMonthDay � $arrDate[‘mday’];
$intWeekDay � $arrDate[‘wday’];
$intMonth � $arrDate[‘mon’];
$intYear � $arrDate[‘year’];
$intYearDays � $arrDate[‘yday’];
$strWeekDay � $arrDate[‘weekday’];
$strMonth � $arrDate[‘month’];

echo “�p�The time is $intHours:$intMinutes:$intSeconds�/p�”;
echo “�p�The date is $intMonthDay/$intMonth/$intYear�/p�”;
echo “�p�The month is $strMonth and the day of the week is $strWeekDay �/p�”;
echo “�p�It is day $intWeekDay out of 6 this week (with Sunday being 0)�/p�”;
echo “�p�There have been $intYearDays days so far this year.�/p�”;
?�

The above script invokes the getdate() function and then assigns each of the returned array
elements into separate variables for the sake of clarity. These are then displayed on the web
page, as illustrated in Figure 13.7.

390 CHAPTER 13 FUNCTIONS

13

The time and date displayed on your computer will be different from
those above, and depends on when you run the script.NOTE

Getting a more accurate time

The getdate() function returns the current time to the nearest second. While this is
 useful, you may need to get a more accurate time stamp and this can be achieved through
the microtime() function:

timeString � microtime ()

Contents of the date arrayTABLE 13.1

Index Description

seconds The seconds part of the current time
minutes The minutes part of the current time
hours The hours part of the current time
mday Day of the month
wday Numerical day of the week (Sunday � 0)
mon Numerical month
year Numerical year
yday Numerical day of the year, e.g. 312
weekday Textual day of the week, e.g. ’Monday’
month Textual month of the year, e.g. ‘May’

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 390

This function returns a string consisting of two parts:

‘msec sec’

The value of ‘sec’ is the number of seconds, which have passed since midnight on 1st

January 1970. The ‘msec’ part of the string is the microseconds fraction of the current
 second. Here is the function in a script:

�?php
// File: example13–22.php

$strSecs � microtime();
echo “�p�$strSecs�/p�”;
?�

At the time of execution the output from the above script was:

0.29059500 1131475671

While we realize that the microtime() function does not seem very impressive it is actually
very useful. We shall return to this function later in the chapter when we come to generate
random numbers.

Checking for a valid date

Sometimes a user is required to enter a date via a form. It is good practice to check that
the date is in fact valid although it is not immediately obvious, for example, which of the
following dates are valid:

6,29,2005
13,19,2005
2,28,2005
2,29,2000

13.3 GETTING THE TIME AND DATE 391

13

Date functionFIGURE 13.7

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 391

In actual fact the answer is:

Valid – 6,29,2005
Invalid – 13,19,2005
Valid – 2,28,2005
Valid – 2,29,2000

Luckly, the checkdate() function exists which returns true value if the date passed to it is
valid and a value of false if it is not. The format of this function is:

checkdate (month, day, year);

The function receives three integer parameters, which represent the month, day and year
of the date and returns true if the date is valid or false if it is not.

�?php
// File: example13-23.php

$booDate � checkdate(2,29,1402);
if($booDate)

echo “�p�This is a valid date!�/p�”;
else

echo “�p�This is an invalid date�/p�”;
?�

The above script outputs the text:

This is an invalid date

392 CHAPTER 13 FUNCTIONS

13

Note that the checkdate() function requires the date to be presented
in the format of month, day, year.NOTE

Random numbers

In PHP there are two steps to generating a random number. The first concerns the seeding
of the random number generator using the srand() function, the format of which is:

srand (seed);

The srand() function is used to set the random number generator to a random position
before we start obtaining our random numbers. Failure to do this will result in a
 predictable set of random numbers To seed the random number generator, we need a large
random number to begin with! One way of achieving this is to use the microtime() func-
tion to obtain the microseconds part of its output and multiply this to a large number (we
told you that we would return to this function). We can do this with the statement:

srand((double) microtime() * 1000000);

13.4

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 392

The above randomly seeds the random number generator with a random number produced
from when the current time is obtained from the microtime() function. We are now ready
to obtain random numbers and the function rand() enables us to do this. The format of
this function is:

number � rand ();

The rand() function can be invoked without any parameters and this returns a random
number, the maximum and minimum values of which are outside your control. However,
you can limit the range of random numbers produced by including start and end parameters,
like this:

number � rand (start, end);

The following script illustrates generating a random number between 1 and 6. This script
could be therefore used to represent the role of a dice:

�?php
// File: example13–24.php

srand((double) microtime() * 1000000);
$intRandVal � rand(1,6);
echo “�p�Random Number: $intRandVal�/p�”;
?�

Fruit-machine example

We are going to put together the knowledge we have learned on the subject of functions
and random numbers to create a fruit-machine script. The script uses some simple images
to represent the fruits in our fruit machine. These are illustrated in Figure 13.8.

These images are stored in the ‘graphics’ sub-directory below where the script is stored:

�?php
// File: example13–25.php

$arrFruits � array (1��”apple”, 2��”orange”, 3��”lemon”, 4��”plum”);

function randomNumber ($intStart, $intEnd) {
srand((double) microtime() * 1000000);
$intRandVal � rand($intStart,$intEnd);
return $intRandVal;

}

$strFirst � $arrFruits[randomNumber(1,4)];
$strSecond � $arrFruits[randomNumber(1,4)];
$strThird � $arrFruits[randomNumber(1,4)];

echo “�h2�Try your luck at the fruit machine &ellipsis;. . . �/h2�”;
echo “�table width�‘450’��tr�”;
echo “�td��img src�‘graphics/$strFirst.gif’ alt�‘$strFirst’/��/td�”;

13.5

13.5 FRUIT-MACHINE EXAMPLE 393

13

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 393

394 CHAPTER 13 FUNCTIONS

13

echo “�td��img src�‘graphics/$strSecond.gif’ alt�‘$strSecond’/��/td�”;
echo “�td��img src�‘graphics/$strThird.gif’ alt�‘$strThird’/��/td�”;
echo “�/tr��/table�”;

if ($strFirst �� $strSecond && $strFirst �� $strThird)
echo “�h2�You Win!�/h2�”;

?�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��input type�‘submit’ value�‘spin’/��/p�

�/form�

The script begins by declaring an array of fruits:

$arrFruits � array (1��”apple”, 2��”orange”, 3��”lemon”, 4��”plum”);

Function randomNumber() is defined to generate random numbers:

function randomNumber ($intStart, $intEnd) {
srand((double) microtime() * 1000000);
$intRandVal � rand($intStart,$intEnd);
return $intRandVal;

}

Three random numbers between 1 and 4 are generated from invoking function
randomNumber() and the corresponding array item is stored in its corresponding variable:

$strFirst�$arrFruits[randomNumber(1,4)];
$strSecond�$arrFruits[randomNumber(1,4)];
$strThird�$arrFruits[randomNumber(1,4)];

The fruit images are output inside a simple table:

echo “�h2�Try your luck at the fruit machine . . . �/h2�”;
echo “�table width�‘450’��tr�”;
echo “�td��img src�‘graphics/$strFirst.gif’ alt�‘$strFirst’/��/td�”;
echo “�td��img src�‘graphics/$strSecond.gif’ alt�‘$strSecond’/��/td�”;
echo “�td��img src�‘graphics/$strThird.gif’ alt�‘$strThird’/��/td�”;
echo “�/tr��/table�”;

An ‘if ’ construct checks if the fruits are the same:

if ($strFirst �� $strSecond && $strFirst �� $strThird)
echo “�h2�You Win!�/h2�”;

Fruit machine imagesFIGURE 13.8

orange lemon apple plum

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 394

13.6 PAGE REDIRECTION AND REFERRAL 395

13

Fruit machineFIGURE 13.9

A simple form is used to allow the user to ‘spin’ the fruits again:

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��input type�‘submit’ value�‘spin’/��/p�

�/form�

The output from the above script is illustrated in Figure 13.9.
FIGURE 13.8

Page redirection and referral

Quite often you may wish to build a secure web page. You may create a login form and
require that a user enters their username and password. You may check that these are
 correct by comparing them to a file or database (we shall show you how to do this later).
If the username and password are valid then you may wish to direct the user to a new
page for them to access. Otherwise the user will remain on the username and password
form page.

User redirection can be performed using the ‘Location:’ string in the header() function:

header (“Location: webpage”);

This basic form of web security is illustrated in Figure 13.10.

13.6

Header functions, like those of cookies, must be called before any
 output is sent to the browser.

NOTE

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 395

Let’s create a simple page to illustrate redirection:

�?php
// File: example13-26.php
if(isset($_POST[“submit”])) {

$strUserPass � array (“john” �� “red”,
“simon” �� “green”,
“liz” �� “blue”,
“david” �� “yellow”);

if (array_key_exists($_POST[“strUsername”], $strUserPass))
if ($strUserPass[$_POST[“strUsername”]] ��

$_POST[“strPassword”])
header(“location: example13-27.php”);

else
echo “�h1�Incorrect Username and/or password!�/h1�”;

}
?�

�form name�“form1” method�“post” action�“”�

�p�

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/��/p�

�p�

�label for�“strPassword”�Password: �/label�

396 CHAPTER 13 FUNCTIONS

13

Simple login and redirectionFIGURE 13.10

Invalid
password

valid
password

Redirected to script

Initial script

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 396

13.6 PAGE REDIRECTION AND REFERRAL 397

13

�input type�“password” name�“strPassword” id�“strPassword”/��/p�

�p��input type�“submit” name�“submit” /��/p�

�/form�

The above script determines if a form has been submitted and if so defines an array of user-
name and passwords:

if(isset($_POST[“submit”])) {
$strUserPass � array (“john” �� “red”,

“simon” �� “green”,
“liz” �� “blue”,
“david” �� “yellow”);

Next function array_key_exists() is used to check if the username key is present in the
array. The function looks like this:

trueFalse � array_key_exists(Arraykey, Array)

In the script we write:

if (array_key_exists($_POST[“strUsername”], $strUserPass))

It then checks to see if the entered username and passwords match and if so redirects the
user to a new page:

if ($strUserPass[$_POST[“strUsername”]] �� $_POST[“strPassword”])
header(“location: example13–28.php”);

Otherwise an error message is generated and the form is redisplayed:

else
echo “�h1�Incorrect Username and/or password!�/h1�”;

The output from the above script for an incorrect username and password is illustrated in
Figure 13.11.

We shall also need to create a simple page to be redirected to:

�?php
// File: example13-27.php

echo “�h1�Well done, you are correctly logged in!�/h1�”;
?�

The output from the above script is shown in Figure 13.12.

All appears to be working well, however consider what happens if a user simply bypasses
the login script and loads ‘example13-27.php’ directly. It works and the user has bypassed
our security.

Stobart-13.qxp:Stobart-13 11/7/07 5:43 PM Page 397

398 CHAPTER 13 FUNCTIONS

13

Correct username and passwordFIGURE 13.12

Incorrect username and passwordFIGURE 13.11

The solution to this problem is to ensure that your script checks the ‘referrer’ of the page,
the name of the web page or script which passed the data to your script. If it is not the
name you were expecting then you can ignore the data. The page referrer is the address of
the web page or script which called the new script and its value can be found in this
 server variable:

$_SERVER[“HTTP_REFERER”]

Because we know the name of the script from which the page should have come
 (‘example13-26.php’), we can amend our ‘example13-27.php’ script to check for this:

�?php
// File: example13-28.php

if (!$_SERVER[“HTTP_REFERER”] !� “http://localhost/example13-26.php”)
header(“location: example13–26.php”);

echo “�h1�Well done, you are correctly logged in!�/h1�”;
?�

Stobart-13.qxp:Stobart-13 11/7/07 5:44 PM Page 398

Header redirects are like cookies and sessions in that they are part of the HTTP header, so
the header() function must be called before any output is sent to the browser. If you were
to include all of the correct DOCTYPE and header information in the above script the cre-
ation of a cookie still needs to come before this. Therefore the full ‘standard conforming’
script looks like this:

�?php
// File: example13–28.php

if ($_SERVER[“HTTP_REFERER”]
! � “http://localhost/book/chapter13/example13–26.php”)

header(“location: example13–26.php”);
?�

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

�h1�Well, done you are correctly logged in!�/h1�

�/body�

�/html�

13.6 PAGE REDIRECTION AND REFERRAL 399

13

Stobart-13.qxp:Stobart-13 11/7/07 5:44 PM Page 399

13

400 CHAPTER 13 FUNCTIONS

Exercises

13.1 Write a script to implement a function which will convert centimetres to inches and
inches to centimetres. The formula for conversion is:

1 centimeter � 0.393700787 inches

13.2 Rewrite the Roman to Arabic date conversion program that you were presented with
in an earlier lesson so that it makes use of functions.

13.3 Create a script which implements the ‘Drunk on a Bridge’ problem. Basically the
drunk starts in the middle of the bridge and randomly staggers to the left or right until
he reaches the left or right hand side of the bridge. The size of the bridge is up to you.

The drunk and bridge graphics can be very simple:

In this chapter we began by examining how to create our own user-defined functions.
We introduced the concept of variable scope and illustrated how functions can receive
 arguments and return a value. Following this we introduced file ‘include’ statements and
illustrated how they can be used to divide up complex scripts and assist in component
reuse. We then introduced dates, times and random numbers and explained why they
are useful. We concluded the chapter by examining how to check the referrer web page
and how to redirect a web page to another automatically.

SUMMARY

Drunk on a bridgeFIGURE 13.13

References and further reading

Gilfillan, I. (2002) Date and Time in PHP http://www.wdvl.com/Authoring/Languages/ PHP/
Date_Time/

Hioxindia.com. Dates and Time in PHP http://www.hscripts.com/tutorials/php/dateAndTime.php
Wikipedia. Subroutines (Functions) http://en.wikipedia.org/wiki/Subroutine

13.4 Write a script which amends ‘example13–26.php’ so that the username and pass-
words are stored in and read from a file.

Stobart-13.qxp:Stobart-13 11/7/07 5:44 PM Page 400

401

CHAPTER 14

Databases

LEARNING OBJECTIVES

● To understand what a relational database is and what tables
and fields are

● To understand the different types that a field can be set
to in MySQL

● To be able to create a database using PhpMyAdmin

● To understand the concept of database keys

● To be able to create a table using PhpMyAdmin

● To be able to populate and edit a table of data using PhpMyAdmin

● To be able to export a database backup dump file

So far we have learned quite a lot about the PHP language but we have not examined one
of PHP’s greatest strengths – its ability to interface to a database management system. In
doing this a PHP script is able to extract, store, amend and delete data in a database.
Being able to link a dynamic scripting language such as PHP to a database unlocks a huge
amount of power in the PHP language and allows us to create very powerful web-enabled
applications.

However, before we can illustrate how PHP interacts with a database, we first need to introduce
the database management system we are going to use and explain how to interact with it in
order to setup a database that PHP can access. In this chapter, we introduce the concept of
 databases and show you how to create a database which we use in Chapter 15.

INTRODUCTION

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 401

Databases

What is a database?

A database is a structured collection of data. Databases occurred in the real world before
computers were invented. Examples of real-world databases include:

● guide to TV programme times
● Filing cabinet of documents
● Telephone directory

A computer-based database is used to store structured information which can be retrieved
and examined quickly and easily. Examples of computer-based databases are:

● DVLA – Driver and Vehicle Licensing Agency, which stores information of all
 vehicles registered within the UK.

● HOLMES – Home Office Large Major Enquiry System, which stores data on offenders
and suspects involved with current and previous police investigations.

A database is essentially a much more sophisticated implementation of the flat files, which
we introduced in Chapter 12. What makes a database so convenient is that the database
manages the storage and retrieval of data to and from the database and hides the complexity
of what is actually going on from the database user. The thing which manages the interface
between the data in the database and the user is known as the database management system.

The database management system (DBMS) is the software that facilitates the creation and
maintenance of a computerized database. In general, the DBMS enables:

● The management of large amounts of data.
● Access to the data using a query language.
● Provision of some form of security to the data.
● Multiple database access for users.
● Access to multiple databases.

We are going to use a database management system called MySQL. MySQL is a very
 powerful database management system and works extraordinarily well with PHP. You can
find all about MySQL at http://www.mysql.com.

MySQL is, in fact, a relational database management system. A relational database stores
data in separate tables instead of one single store. In theory, this provides a faster, more
flexible database system.

Relational database fields and tables

In relational database systems such as MySQL, data is organized into tables. A database
table is very similar to a table inserted into a word-processed document as a database table

14.1

402 CHAPTER 14 DATABASES

14

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 402

14.1 DATABASES 403

14

Customers tableFIGURE 14.1

Customers

Title Surname Firstname

Customers table with recordsFIGURE 14.2

Customers

Title Surname Firstname

Mrs

Mrs

Mr

Mr

Mr

Mr

Mr

Mr

Mr

Mr

Ms

Miss

Smith

Smith

Bell

Hall

Smith

Jones

Green

Smith

Bell

Brown

Jones

Brown

Lynne

Ann

Simon

David

Peter

Liz

Kevin

Jack

William

Lynne

Simon

Ian

consists of both rows and columns. Columns are often referred to as ‘fields’ and are used
to delimit the data structure into the correct order. The rows in a database table are where
the records are stored. A database table also has a unique name assigned to it within a
 specific database. A simple database table is illustrated in Figure 14.1.

If we look at Figure 14.1, we see that it contains a table called Customers. This table con-
sists of three column fields of data entitled Title, Surname and Firstname. The data (there
is none at the moment) will be inserted into each of these fields forming a number of
record rows within the table. These rows are referred to as the table records. Figure 14.2
illustrates our database table populated with some records.

Relational databases can contain many different tables of data. For example, Figure 14.3
illustrates a Products table with some records.

One thing to note from Figure 14.3 is that the number of fields in each table within a
 database can vary. In the Products table we have four fields: name, description, quantity
and cost.

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 403

Database field types

Database fields are what defines the structure of the data within a table. Like variables,
database fields can be defined as being of different types. To make things a little more com-
plex, the types that the database fields can be defined as are not always the same as the
programming language being used to access the database. In the MySQL database manage-
ment system, quite a few field types can be defined. These are listed in Tables 14.1, 14.2
and 14.3.

Looking back to our Customers and Products tables, we can think about what types we
should assign to each of our database fields. In the case of the Customers table, we would
recommend the following types:

Title varchar (10)
Surname varchar (100)
Firstname varchar (100)

In the case of the Products table:

Name varchar (255)
Description text
Quantity int
Cost float

404 CHAPTER 14 DATABASES

14

Products table with recordsFIGURE 14.3

Products

Name

Beer Glass

Wine Glass

Wine Glass

Shot Glass

Spirit Glass

Long Glass

Beer Glass

Wine Glass

Description Quantity Cost

600 ml Beer Glass

125 ml Wine Glass

175 ml Wine Glass

50 ml Small Glass

100 ml Short Glass

200 ml Tall Glass

300 ml Beer Glass

225 ml Wine Glass

345

236

436

132

489

263

247

96

3.99

2.99

3.50

1.50

2.50

2.50

2.99

3.99

Text field typesTABLE 14.1

Type Maximum Length Description

varchar 255 characters Variable-length text field type
char 255 characters Fixed-length text field type
tinytext 255 characters Variable-length text field type
text 65,535 characters Variable-length text field type
mediumtext 16,777,215 characters Variable-length text field type
longtext 4,294,967,295 characters Variable-length text field type
enum 65,535 characters Potential values of a text field

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 404

The numbers in parentheses after the varchar field types define the maximum number of
characters which can be stored in that field. Therefore in the case of the Title field only
10 characters is specified as we will only store data such as ‘Mr’, ‘Mrs’, ‘Doctor’ and
‘Professor’ for example. However, in the case of Surname, a total of 100 characters is
 specified as we wish to store customer’s surnames, some of which could be quite long.

phpMyAdmin interface

MySQL is a very powerful database management system and we will only just scratch the
surface of it in these chapters. MySQL can be controlled through a simple command-line
interface, however to make life more easy for us we are going to use a graphical user inter-
face which is accessible through a web browser. This interface is known as phpMyAdmin
(because it is written in PHP) and is illustrated in Figure 14.4.

More information on phpMyAdmin can be found at http://www.phpmyadmin.net/
home_page/index.php. The phpMyAdmin interface is a very powerful tool in its own right.
It has to be, as it is forming an interface to the MySQL database management system and
that has a large number of facilities to which phpMyAdmin is providing access. You can

14.2

14.2 PHPMYADMIN INTERFACE 405

14

Numeric field typesTABLE 14.2

Type Maximum Length Description

int 4,294,967,295 Signed or unsigned numeric field type
tinyint 255 Signed or unsigned numeric field type
mediumint 16,777,215 Signed or unsigned numeric field type
bigint 18,446,744,073,709 Signed or unsigned numeric field type
float - Signed floating-point numeric field type
double - Signed floating-point numeric field type
decimal - Signed numeric field type (numbers

stored as characters)

Date and time field typesTABLE 14.3

Type Range Description

date 1001-01-01 to 9999-12-31 Date format: YYYY-MM-DD
time -838:59:59 to 838:59:59 Time format
datetime 1001-01-01 00:00:00 to 9999- Date–time format: YYYY-MM-DD

12-31 23:59:59 HH:MM:SS
timestamp 2 to 14 digits Numeric values to represent different

types of Unix timestamp
year 1901 to 2155 Four digits (or two digits) to

represent a year.

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 405

406 CHAPTER 14 DATABASES

14

phpMyAdmin interfaceFIGURE 14.4

access phpMyAdmin by clicking your wamp icon on the tool bar and then choosing
phpMyAdmin from the menu which appears. If you have installed wamp then another way
of running phpMyAdmin is by typing:

http://localhost/

into your browser navigation window and then clicking phpMyadmin from the tools menu
which appears in the browser window, as shown in Figure 14.5.

A web browser should launch shortly displaying the phpMyAdmin application, as shown in
Figure 14.4.

By default, phpMyAdmin doesn’t have a password set for the root account to which you
default. This is a serious security issue which needs to be addressed if you wish to run your
PHP scripts and MySQL database on a live web site. However, all good service providers will
have secured their MySQL database systems which means that when the initial phpMyAdmin
screen appears you will be prompted for a username and password. However, for now don’t
worry about the lack of root password if you are developing on your own computer.

Creating a database

To create a new database, you simply type the name you wish to call your database, for
example ‘glassesRus’ into the form field on the home page of the phpMyAdmin system and
click the ‘Create’ button, as illustrated in Figure 14.6.

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 406

14.2 PHPMYADMIN INTERFACE 407

14

Selecting the phpMyAdmin applicationFIGURE 14.5

When you click the ‘Create’ button, you should get a message indicating that the database
has been correctly created, as shown in Figure 14.7.

Viewing a database

phpMyAdmin provides access to all the databases you have created (or which have
been created for you) via a simple drop-down menu system on the left of the applica-
tion window. To view the databases you have available, click the button next to
‘(Databases)’ on the left of the screen. A drop-down menu of the databases that you
have available should appear. Figure 14.8 illustrates the databases which are available
on our test computer. As you can see, we have rather a lot as we have been develop-
ing various projects over a number of years. However, if you look closely you can see
that in the list is a database called ‘glassesRus’. We are going to select this one by click-
ing on it.

When we have selected our database, we should see a screen with a message ‘No tables
found in database.’, as shown in Figure 14.9.

This is fine as we haven’t created any just yet. However, before we start creating some
database tables, it is time to learn some more things about tables and database records.

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 407

408 CHAPTER 14 DATABASES

14

A successfully created databaseFIGURE 14.7

Creating a databaseFIGURE 14.6

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 408

14.2 PHPMYADMIN INTERFACE 409

14

Available databasesFIGURE 14.8

Database with no tablesFIGURE 14.9

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 409

410 CHAPTER 14 DATABASES

14

Obtaining a specific person’s recordFIGURE 14.10

Customers
Title

Mrs

Miss

Mr

Mr

Mr

Ms

Mr

Mr

Mr

Mrs

Mr

Mr

Surname
Smith

Jones

Brown

Smith

Bell

Hall

Smith

Jones

Green

Smith

Bell

Brown

Firstname
Lynne

Ann

Simon

David

Peter
Liz

Kevin

Jack

William

Lynne

Simon

Ian

Title Surname Firstname

Ms Hall Liz

Database table keys

Take another look at the Customers table in Figure 14.2. Suppose we ask the database
management system to search that table of records for a specific person, say ‘Ms Liz
Hall’, the database is able to return us a single record for that person, as shown in
Figure 14.10.

However, if we want to search for ‘Mrs Lynne Smith’, we have a potential problem, as
illustrated in Figure 14.11.

The problem is that there are two Mrs Lynne Smiths and with our current table design we
are not able to distinguish one from another. Now this might not be a problem for the
moment, but if you want to charge Mrs Lynne Smith for a purchase that she has just
made then you has better be sure that the correct Mrs Lynne Smith is charged.

The easy solution around the problem of potentially having identical data is to create a unique
data field (called a key). Because the key field is always unique we can always identify one
record from another. Figure 14.12 illustrates what a unique key field can look like. We have
amended the Customers table so that it now contains a new field called Id. This field
 contains a simple unique integer value.

Figure 14.12 also illustrates that when we search for ‘Ms Liz Hall’ things work per-
fectly well. Figure 14.13 illustrates that the search for ‘Mrs Lynne Smith’ returns us
the two records but the unique identifiers allow us to distinguish one record from
another.

We can also create a unique key in the Products table, as illustrated in Figure 14.14.

14.3

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 410

The types for each of the fields in our Customers table now look like this:

Id int
Title varchar (10)
Surname varchar (100)
Firstname varchar (100)

14.3 DATABASE TABLE KEYS 411

14

Problem with obtaining a specific person’s recordFIGURE 14.11

Unique identifier fieldFIGURE 14.12

Customers
Title

Mrs

Miss

Mr

Mr

Mr

Ms

Mr

Mr

Mr

Mrs

Mr

Mr

Surname
Smith

Jones

Brown

Smith

Bell

Hall

Smith

Jones

Green

Smith

Bell

Brown

Firstname
Lynne

Ann

Simon

David

Peter
Liz

Kevin

Jack

William

Lynne

Simon

Ian

Title Surname Firstname

Mrs Smith Lynne

Mrs Smith Lynne

Id Title Surname Firstname

6 Ms Hall Liz

Id

Customers

1

2

3

4

5

6

7

8

9

10

11

12

Mrs

Miss

Mr

Mr

Mr

Ms

Mr

Mr

Mr

Mrs

Mr

Mr

Title Surname Firstname

Smith

Jones

Brown

Smith

Bell

Hall

Smith

Jones

Green

Smith

Bell

Brown

Lynne

Ann

Simon

David

Peter

Liz

Kevin

Jack

William

Lynne

Simon

Ian

Note that our unique key fields can have the same name and values
in different database tables.NOTE

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 411

And in the case of the Products table:

Id int
Name varchar (255)
Description text
Quantity int
Cost float

We are now ready to create and populate these tables in our database using the
phpMyAdmin tool.

412 CHAPTER 14 DATABASES

14

Products table with Id fieldFIGURE 14.14

Id

Products

1

2

3

4

5

6

7

8

Beer Glass

Wine Glass

Wine Glass

Shot Glass

Spirit Glass

Long Glass

Beer Glass

Wine Glass

Name Description Quantity Cost

600 ml Beer Glass

125 ml Wine Glass

175 ml Wine Glass

50 ml Small Glass

100 ml Short Glass

200 ml Tall Glass

300 ml Tall Glass

225 ml Wine Glass

345

236

436

132

489

263

247

96

3.99

2.99

3.50

1.50

2.50

2.50

2.99

3.99

Unique identifier field with multiple recordsFIGURE 14.13

Id Title Surname Firstname

1 Mrs Smith Lynne

10 Mrs Smith Lynne

Id

Customers

1

2

3

4

5

6

7

8

9

10

11

12

Mrs

Miss

Mr

Mr

Mr

Ms

Mr

Mr

Mr

Mrs

Mr

Mr

Title Surname Firstname

Smith

Jones

Brown

Smith

Bell

Hall

Smith

Jones

Green

Smith

Bell

Brown

Lynne

Ann

Simon

David

Peter

Liz

Kevin

Jack

William

Lynne

Simon

Ian

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 412

Working with data in phpMyAdmin

Creating tables

To create a new table in phpMyAdmin, you simply type the name of the table you wish to
create into the Name: field and the number of fields into the create table form. This form
is illustrated in Figure 14.15. In the case of the Customers table we type ‘Customers’ and 4
and click the Go button.

After the Go button has been clicked, the screen changes to display the form field form!
This is illustrated in Figure 14.16. The form looks quite difficult at first but the great thing
is that we can ignore many of the options and things will work just fine.

The first thing to note is that we have four rows of the form to complete as the table has
four fields. The first column, ‘Field’ is where the names of our fields are inserted. The next
column, ‘Type’ is a drop-down list of the different types that MySQL supports. We have
already determined which type each of our fields is going to be so there is no problem
here. The third column, ‘Length/Values’ is where you specify the length of a field where
applicable. For example, the Title field is a varchar type and we have specified that it has
a maximum size of 10, so we would insert the value 10 in this column.

The remaining columns allow us to specify special attributes for our field. These are
described in Table 14.4.

14.4

14.4 WORKING WITH DATA IN PHPMYADMIN 413

14

Creating a new tableFIGURE 14.15

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 413

414 CHAPTER 14 DATABASES

14

Special field attributesTABLE 14.4

Field Description

Collation Specifies the character set of the data to be stored in the table. We will
not be using this option.

Attributes Unsigned: A numeric value is to be unsigned.
Unsigned zero fill: A numeric value is to be unsigned and zeros will be
placed before the start of the number to pad out the field to its specified
maximum size.

We will not be using this option.
Null Not Null: The database field cannot be blank. If it is then an error is

generated.

Null: The database field can be blank.
Default Specifies a value to which the field will be set if no data value is supplied.
Extra Auto–increment: The field value is automatically generated when a new

record is created. This is used mainly to ensure that a unique field value is
created as the value produced is one larger than the last one produced.
Primary, Indexed and Unique: Specifies how the table is indexed. We will
be using primary key indexing with our key fields.
Specifies that the field contains full text. We will not be using this option.

Table form field formFIGURE 14.16

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 414

The great news is that in most cases we can simply ignore these extra columns. However,
in the case of the first table field, Id we need to ensure that in addition to entering ‘Id’ in
the Field column and selecting ‘INT’ in the Type column, we need to ensure that
‘auto_increment’ is selected in the Extra column and that the ‘Primary’ radio button is
selected. The ‘auto_increment’ option instructs the database to create the data value
stored in the Id field when a new record is added to the table. The data value is the value
of the previously stored Id incremented by one. This option guarantees a unique primary
key for each record and is typically used when a primary key is required.

The other three fields in the Customers table, require only the Field, Type and
Length/Values columns to be entered. This is illustrated in Figure 14.17.

When the table has been completed the Save button can be clicked. The screen will then dis-
play a message that the Customers table has been created and provide a complex means of
amending and altering the table if required. This screen is shown in Figure 14.18.

On the left of the screen, the drop-down Databases menu now has a (1) next to the
 database name. This indicates that the database has one table. Also note that below the
drop-down database list is the name of the database which we are currently editing and the
name of the first (and, currently, only) table within the database.

Now, this text is not simply information presented here but a clever data access system. If
you click on the name of the database below the drop down list you will be taken to the

14.4 WORKING WITH DATA IN PHPMYADMIN 415

14

Completed field information for the customers tableFIGURE 14.17

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 415

‘Create new table’ form, as shown in Figure 14.15. If you click on the name of the database
table ‘Customers’ then you will be taken to the table edit screen as shown in Figure 14.18.

Now that you know how to create a table, move to the ‘Create new table form’ and
 create the Products table. Remember that there are five field types and they are:

Id int
Name varchar (255)
Description text
Quantity int
Cost float

Also, remember that the Products Id, like the Customers Id, will need to have ‘auto_
 increment’ selected in the Extra column and the ‘Primary’ radio button also selected. The
completed form is shown in Figure 14.19.

When the Save button is clicked, you should be taken to a screen indicating that the
 Products table has been correctly created, as shown in Figure 14.20.

You should also note that on the left of the screen a second table (products) has now been
inserted below the previous, customers, one. Furthermore, the number 2 should now be
next to the database name on the drop-down menu indicating that the database has
two tables.

416 CHAPTER 14 DATABASES

14

Customers table screenFIGURE 14.18

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 416

14.4 WORKING WITH DATA IN PHPMYADMIN 417

14

Completed field information for the Products tableFIGURE 14.19

Products table screenFIGURE 14.20

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 417

We are making progress. The next step is to populate these tables with the data shown in
Figure 14.2 and Figure 14.3.

Adding data

To add data records to a table in phpMyAdmin, you first click on the table to which you
wish to add records in the list on the left of the web page below the database name. If you
click on customers, you should see a screen like that shown in Figure 14.18. To begin
adding records, click the Insert tab near the middle top of the screen and you should see
a screen similar to that in Figure 14.21.

The records we wish to insert into this table are shown in Figure 14.2. Our first record is:

Mrs Smith Lynne

You should type this data into the corresponding Value fields on the right of the top form.
You can ignore the bottom form fields.

418 CHAPTER 14 DATABASES

14

Do NOT enter a value for ID. When we created the table, we selected
the auto-increment setting which means that this value will be
 created automatically for us.

NOTE

Insert customer records screenFIGURE 14.21

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 418

Because we have a number of records to insert, click the ‘Insert another new row’ button
at the bottom of the screen. Your screen should look like that shown in Figure 14.22 just
before you click the Go button.

After clicking the Go button, you should be taken to a screen which informs you that the
row has been correctly inserted and presents you with a new form to insert the next row
record. Insert all the records shown in Figure 14.2 into the table.

When you have finished, click the products table link on the left of the screen under the
database name. Then select the Insert tab and insert all of the record rows for the Products
table as shown in Figure 14.3.

14.4 WORKING WITH DATA IN PHPMYADMIN 419

14

Completed customer records screenFIGURE 14.22

Remember not to insert the ID values for the records as these will be
inserted automatically.NOTE

Viewing records

We can view the records we have entered to ensure that they are correct by clicking the
icon to the left of the table names, as shown in Figure 14.23.

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 419

Clicking the symbol next to the Customers table name results in the display of the screen
shown in Figure 14.24.

Clicking the same symbol next to ‘products’ will result in the display of the record rows
inserted for the Products table. Take a close look at the 12 records you have inserted into
the Customers table. Note that the Id record field has been automatically filled with the
values 1 to 12. Also note that there are two graphical symbols next to each record row. The
first is a pencil and allows us to edit the data within the row. The second symbol is a cross
and enables us to delete the record.

Editing a record

To edit a record you need to click the pencil icon next to it. We are going to edit record
number 6:

6 Ms Hall Liz

420 CHAPTER 14 DATABASES

14

Customer table contentsFIGURE 14.24

View records symbolFIGURE 14.23

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 420

This customer has now decided that she wishes to be known by her full name, ‘Elizabeth’
and so we need to correct the record. After clicking the pencil icon we are taken to a screen
like that shown in Figure 14.25.

In the values column of the form, delete the name ‘Liz’ and replace it with ‘Elizabeth’.
Clicking the Go button will return you to the previous screen.

14.4 WORKING WITH DATA IN PHPMYADMIN 421

14

Check that all of the other records are correct in both the Customers
and the Products tables and make any changes required before
 progressing to the next stage.

NOTE

Editing a record screenFIGURE 14.25

Backing up a database

While our MySQL database will remain perfectly okay for the moment, it is a good idea
to make a copy of the database for security reasons. This will allow us to restore our data-
base if anything goes wrong and also it will allow us to install the database on another
MySQL database management system on another computer without the need to enter in
all the data tables and records which we have done so far.

To make a database backup we first need to click on the database name on the left of the
screen. The screen should now display the information shown in Figure 14.26.

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 421

422 CHAPTER 14 DATABASES

14

Export database screenFIGURE 14.27

Database information screenFIGURE 14.26

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 422

14.4 WORKING WITH DATA IN PHPMYADMIN 423

14

Next, we need to select the Export tab near the middle top of the screen. The screen
should now look like Figure 14.27.

To back up your database to a file simply click the ‘Save as file’ checkbox and then click
the Go button. A pop up dialogue box as shown in Figure 14.28 will appear allowing you
to save the database to a local file.

Click the button and a file with the same name as your database and the extension .sql will
be produced.

This is an SQL dump file of your database. It is not really a backup of
the database but a file from which the database can be recreated on
any MySQL system.

NOTE

If you open the database .sql file in a text editor, you will see that its contents look like this:

—– phpMyAdmin SQL Dump
—– version 2.6.1-pl3
—– http://www.phpmyadmin.net

Save database to fileFIGURE 14.28

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 423

—–
—– Host: localhost
—– Generation Time: Nov 12, 2005 at 03:05 PM
—– Server version: 4.1.10
—– PHP Version: 5.0.4
—–
—– Database: `glassesrus`
—–

—– —–—–—–—–——–—–—–—–——–—–—–—–——–—–—–—–—–—–——–—–—–—–—

—–
—– Table structure for table `customers`
—–

CREATE TABLE `customers` (
`Id` int(11) NOT NULL auto_increment,
`Title` varchar(10) NOT NULL default ‘’,
`Surname` varchar(100) NOT NULL default ‘’,
`Firstname` varchar(100) NOT NULL default ‘’,
PRIMARY KEY (`Id`)

) ENGINE � InnoDB DEFAULT CHARSET � latin1 AUTO_INCREMENT � 13 ;

—–
—– Dumping data for table `customers`
—–

INSERT INTO `customers` VALUES (1, ‘Mrs’, ‘Smith’, ‘Lynne’);
INSERT INTO `customers` VALUES (2, ‘Miss’, ‘Jones’, ‘Ann’);
INSERT INTO `customers` VALUES (3, ‘Mr’, ‘Brown’, ‘Simon’);
INSERT INTO `customers` VALUES (4, ‘Mr’, ‘Smith’, ‘David’);
INSERT INTO `customers` VALUES (5, ‘Mr’, ‘Bell’, ‘Peter’);
INSERT INTO `customers` VALUES (6, ‘Ms’, ‘Hall’, ‘Elizabeth’);
INSERT INTO `customers` VALUES (7, ‘Mr’, ‘Smith’, ‘Kevin’);
INSERT INTO `customers` VALUES (8, ‘Mr’, ‘Jones’, ‘Jack’);
INSERT INTO `customers` VALUES (9, ‘Mr’, ‘Green’, ‘William’);
INSERT INTO `customers` VALUES (10, ‘Mrs’, ‘Smith’, ‘Lynne’);
INSERT INTO `customers` VALUES (11, ‘Mr’, ‘Bell’, ‘Simon’);
INSERT INTO `customers` VALUES (12, ‘Mr’, ‘Brown’, ‘Ian’);

—– —–—–—–—–——–—–—–—–——–—–—–—–——–—–—–—–—–—–——–—–—–—–—

—–
—– Table structure for table `products`
—–

CREATE TABLE `products` (
`Id` int(11) NOT NULL auto_increment,
`Name` varchar(255) NOT NULL default ‘’,
`Decription` text NOT NULL,
`Quantity` int(11) NOT NULL default ‘0’,
`Cost` float NOT NULL default ‘0’,

424 CHAPTER 14 DATABASES

14

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 424

PRIMARY KEY (`Id`)
) ENGINE�InnoDB DEFAULT CHARSET�latin1 AUTO_INCREMENT�9 ;

—–
—– Dumping data for table `products`
—–
INSERT INTO `products` VALUES (1, ‘Beer Glass’, ‘600 ml Beer Glass’,
345, 3.99);
INSERT INTO `products` VALUES (2, ‘Wine Glass’, ‘125 ml Wine Glass’,
236, 2.99);
INSERT INTO `products` VALUES (3, ‘Wine Glass’, ‘175 ml Wine Glass’,
436, 3.5);
INSERT INTO `products` VALUES (4, ‘Shot Glass’, ‘50 ml Small Glass’,
132, 1.5);
INSERT INTO `products` VALUES (5, ‘Spirit Glass’, ‘100 ml Short
Glass’, 489, 2.5);
INSERT INTO `products` VALUES (6, ‘Long Glass’, ‘200 ml Tall Glass’,
263, 2.5);
INSERT INTO `products` VALUES (7, ‘Beer Glass’, ‘300 ml Beer Glass’,
247, 2.99);
INSERT INTO `products` VALUES (8, ‘Wine Glass’, ‘225 ml Wine Glass’,
96, 3.99);

Keep this file safe: you can create your database on any MySQL system with it.

Deleting tables

If you ever need to delete a database’s tables you can do this by first selecting the database
from the drop-down menu.

To delete the tables from the database, you simply click the checkboxes on the far left next
to each of the tables shown. Then you select the drop-down menu below the list of
tables and select the Drop option. The screen displayed should look like that shown in
Figure 14.29.

A screen will appear confirming that you want to delete the selected tables (see Figure 14.30).
Clicking ‘Yes’ will delete the tables.

Restoring a database

To restore a database’s tables, you first select the database you wish to restore from your
drop-down menu list or create a new blank database. Next, click on the database name on
the left of the screen and then select the Import tab from the top of the screen. Your
screen should look something like that shown in Figure 14.31.

Click the Browse button and locate the .sql file that you created earlier. Clicking the Go
button will result in the database tables being correctly loaded and a screen similar to that
shown in Figure 14.32 should appear.

14.4 WORKING WITH DATA IN PHPMYADMIN 425

14

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 425

426 CHAPTER 14 DATABASES

14

Deleting database tablesFIGURE 14.29

Deleting tables confirmation screenFIGURE 14.30

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 426

14.4 WORKING WITH DATA IN PHPMYADMIN 427

14

Restoring a database from an SQL fileFIGURE 14.31

Recreating tablesFIGURE 14.32

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 427

Extending our database

Our design

It’s time now to consider our database design. Currently we have two tables: Customers
and Products. We can illustrate them graphically using a database design notation as shown
in Figure 14.33.

I have used a tool called MySQL Workbench to draw my database design. The tool is
 available from http://dev.mysql.com/downloads/gui-tools/5.0.html. It is currently only
in an Alpha release which means that it is not designed for commercial projects.
However, the tool does provide a good insight into the next generation of database
design tools.

How to use the MySQL Workbench is outside the scope of this tutorial but what we can
clearly see is that we have two database tables which are independent of each other at
the moment. We are using the tool only to illustrate the new tables we are going to create
and the relationships between them. We shall show how to create the tables in
phpMyAdmin shortly.

Currently, this database design isn’t of much use to us so we need to improve its design.
What we are going to do is to create a new table called Purchases. This table is going to
hold the details of the purchases made by each customer. Its data fields and types are going

14.5

428 CHAPTER 14 DATABASES

14

Current database design in MySQL WorkbenchFIGURE 14.33

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 428

to be as follows:

Id Integer
customers_Id Integer
Day Integer
Month Integer
Year Integer

The customers_Id field is the same as the id field in the Customers table and it allows us
to form a relationship between the Customers table and the Purchases table as we need to
be able to know when reading the Purchases table which customer made the purchase. Our
database design now looks like that shown in Figure 14.34.

Now the Purchases table holds its own unique Id as well as the Id of the customer who made
the purchase. It also has three fields to store the date that the purchase was made. We could
have used a single date field but it will be easier for us later if we keep these as three sepa-
rate integer fields. However, the design doesn’t yet allow us to store which products were
purchased at that time. To do this we need to create a new table called purchaseProducts.
The purchaseProducts table will contain the following data fields and types:

products_Id Integer
purchases_Id Integer
Quantity Integer
Cost Float

The products_Id field is the Id field from the Products table; it allows us to determine
which product was bought. The purchase_Id is the Id field from the Purchases table.

14.5 EXTENDING OUR DATABASE 429

14

Revised database designFIGURE 14.34

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 429

The Quantity field stores how many products were purchased and the Cost field is the
price. We have included the cost field in this table as well as in the Products table as it is
possible that the cost of a product may change over time but we would want to record the
cost for which it was actually purchased, hence why this field is included in the
purchaseProducts table. Our database design is now as shown in Figure 14.35.

It is time to create these new tables in our MySQL database using phpMyAdmin. Click on
the database name on the left of the screen and, as shown in Figure 14.7, enter the name
of the first new table. This will be purchaseProducts and it contains the four fields
 mentioned above. This table doesn’t have its own primary index but it does have two
indexes from other tables. These are the products_Id and purchases_Id fields. To indicate
these we need to ensure that the ‘Index’ radio button is selected. This is the second radio
button along on the far right of the screen. This radio button should be selected for both
of these fields as indicated in Figure 14.36. After you have entered the data as shown, click
the Save button to create the table.

Next we create the Purchases table by clicking on the database name of the left of the
screen and entering the name ‘Purchases’ along with the value 5 for the number of fields.

Clicking the Go button will display the create table screen for the Purchases. This is
 completed as shown in Figure 14.37.

430 CHAPTER 14 DATABASES

14

purchaseProducts table added to designFIGURE 14.35

Note that the Id field is auto_increment and is a Primary key. Also, that
customer_Id is an Index.NOTE

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 430

14.5 EXTENDING OUR DATABASE 431

14

Adding the purchaseProducts tableFIGURE 14.36

Adding the Purchases tableFIGURE 14.37

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 431

We have now finished creating our database structure and can add some data to these
new fields.

Our data

The next step in our database creation is to include some new records for the tables we
have just created. The data to be entered into the Purchases table is shown in Figure 14.38
and the data to be entered into the purchaseProducts table in Figure 14.39. Enter all of this
data into the correct database tables.

That’s it, we have now completed our database structure and data content. In the next
 lesson we shall learn how to use PHP scripts to interact with the MySQL database and
extract and manipulate this data.

432 CHAPTER 14 DATABASES

14
purchaseProducts table dataFIGURE 14.39

purchaseProducts

2

8

3

5

1

4

7

products_Id purchase_ID Quantity Cost
1

2

4

4

6

7

7

20

30

10

40

6

25

55

2.99

4.50

3.50

3.00

3.99

2.00

2.50

3

6

4

1

3

5

8

2

3

4

5

7

7

7

10

25

100

22

15

10

1

3.50

2.50

1.50

3.99

3.50

2.50

3.99

Purchases table dataFIGURE 14.38

Id

Purchases

1

2

3

4

5

6

7

2

4

6

2

1

9

7

customers_Id Day Month Year

3

6

13

22

28

1

1

9

9

9

9

9

10

10

2006

2006

2006

2006

2006

2006

2006

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 432

REFERENCES AND FURTHER READING 433

14

Exercises

14.1 Back up your completed database to a .sql file and keep this safe.

In this chapter, we began by introducing the concept of databases. We described the
 concept of database tables and their fields. We examined the different field types that a
database such as MySQL supports. Next we introduced the phpMyAdmin tool and illus-
trated how this can be used to manipulate MySQL databases. We showed the creation of
a database through the creation of the ‘glassesrus’ database. We examined how records
can be added, amended and deleted and how the database can be backed up to a dump
file. Finally, we illustrated the MySQL Workbench tool and extended our database.

SUMMARY

References and further reading

MySQL. Home Page. http://www.mysql.com/
MySQL. Documentation. http://dev.mysql.com/doc/
Php editors.com. Learning SQL using phpMyAdmin http://www.php-editors.com/articles/

sql_phpmyadmin.php
phpMyAdmin. Home Page. http://www.phpmyadmin.net/home_page/index.php
Wikipedia. Databases. http://en.wikipedia.org/wiki/Database

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 433

Stobart-14.qxp:Stobart-14 11/6/07 9:32 PM Page 434

435

CHAPTER 15

Linking PHP to a Database

LEARNING OBJECTIVES

● To understand how to connect to a MySQL database using PHP

● To understand how to read a single record from a database

● To understand how to read multiple records from a database

● To understand how to read records which match to specific requirements

● To understand how to sort returned records

● To understand how to delete, insert and amend records

● To understand how to count the number of occurrences of records which
match a search criteria

In Chapter 14, we introduced the MySQL relational database management system. We showed
that using the phpMyAdmin interface to MySQL we were able to create new databases. Within
these databases we created tables and specified the field names and types which hold the data
we included within the tables. We needed to undertake these tasks because this was preparation
for what we are about to learn in this chapter.

We are now going to see how PHP can interact with the database we have created, extracting
information from the database as well as updating it. We shall show how easy it is to do this and
how the database can assist us in producing truly dynamic and useful web-enabled applications.

Connecting to a MySQL DBMS

In order for a PHP script to access a database we need to form a connection from the script
to the database management system (DBMS). Connecting a PHP script to a DBMS is a

15.1

INTRODUCTION

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 435

multi-phased activity. We shall examine each of these activities separately. The first thing
we need to do in our script is to form a connection from the local script to the DBMS we
want to access. To do this we use the mysql_connect() function:

resourceId � mysql_connect(server, username, password);

The mysql_connect() function requires three parameters. The first is the name of the
server, the second is your username and the third your password. The mysql_connect()
function returns a resource-identifier type, which is the same type as was returned when
we formed a connection to a file.

If you are developing on your own standalone computer the format of this function may
look like this with the value of server set to be ‘localhost’, the username as ‘root’ and what-
ever password you have set:

$dbLocalhost � mysql_connect(“localhost”, “root”, “password”)

436 CHAPTER 15 LINKING PHP TO A DATABASE

15

If you have no password you will still need to include the parameter
but leave it blank like this: “”.NOTE

A PHP script can connect to a DBMS anywhere in the world, so long as it is connected to
the Internet. The DBMS doesn’t need to be on the same computer as that running the
script. Furthermore, a script can connect to more than one DBMS at the same time.
However, to keep things simple we shall connect to a single DBMS for now.

Having created a link to the DBMS we wish to access, the next stage is to select the
 database that we wish to use. This is done using the function mysql_select_db() which
allows us to specify which database at the location defined in the mysql_connect()
 function we wish to access:

mysql_select_db(databasename, resourceId)

The mysql_connect() function requires two parameters. The first is the name of the data-
base you wish to access and the second is the resourceId which was returned from invoking
the previous mysql_connect() function. The function returns ‘true’ if the database
 selection worked or ‘false’ if not. The following is an example of invoking the function:

mysql_select_db(“glassesrus”, $dbLocalhost)

Next we need to mention the function die() which is an alias of exit().The die() func-
tion stops execution of the script if the previous database connection could not be formed,
it looks like this:

die (“Error Message”)

Function die() has a single parameter which is a message which is displayed before execution
is stopped. It is common practice to combine the use of function die() with that of func-
tion mysql_error() which returns the text of the error message from the previous MySQL
 operation. The mysql_error() function looks like this:

mysql_error()

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 436

The mysql_error() function requires no parameters and returns an error message string.
Combining function die() and function mysql_error() looks like this:

die(“Could not connect: “ . mysql_error())

Combining the die() function with the mysql_connect() function requires us to use the
‘or’ construct like this:

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

The above code fragment should now be read as ‘form a mysql connection to localhost and
if this doesn’t work stop the script’.

We are now ready to form these functions together into our first PHP script and here it is:

�?php
// File: example15-1.php

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“glassesrus”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

echo “�h1�Connected To Database�/h1�”;
?�

The above script opens a connection to the DBMS server and then attempts to select
 database ‘glassesrus’ the database we created in Chapter 14. If something goes wrong in
either operation an error message is generated and the script terminates. If all goes well,
the output from running the above script will appear to be nothing.

Reading from a database

The next step in linking PHP to a database is to get it to send a Structured Query Language
(SQL) statement to the database in order to begin to retrieve data records. To do this
we need to introduce a new function that of mysql_query():

resourceRecords � mysql_query (query, resourceId);

Function mysql_query() requires two parameters; the first is an SQL query string (more
on this in a minute) and the second is the database resource identifier returned from the
mysql_connect() function. The function returns a resource identifier to the returned data.

15.2

15.2 READING FROM A DATABASE 437

15

Function mysql_query() will fail and return ‘false’ if table(s) referenced
by the query do not exist.

The following is an example of a valid use of the function:

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)

NOTE

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 437

If we modify our PHP script to include this function call we now end up with:

�?php
// File: example15-2.php

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“glassesrus”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

echo “�h1�Connected To Database�/h1�”;
?�

If all goes well the output from running the above script will appear to be nothing.

It is worth having a closer look at the SQL statement which we have used in the
above function. Figure 15.1 illustrates what the components of this SQL statement
 actually mean.

The mysql_query() function returns us a resource pointer to all the records which match
the SQL statement we supplied. This could be zero, one or many records. What we need
is a function which returns the contents of one record cell from the record set. This
 function is called mysql_result():

fielddata � mysql_result (resourceRecords, row, field);

The mysql_query() function requires three parameters. The first is the resource pointer
to the records returned by the mysql_query() function. The second is the number indicat-
ing which record to return, with 0 being the first record, 1 the second, and so on. The third
parameter is the name of the database field to return. The function returns the data stored
in the field. Here is an example of the function:

$strSurname � mysql_result($dbRecords, 0, “surname”);

438 CHAPTER 15 LINKING PHP TO A DATABASE

15
SQL select statementFIGURE 15.1

SELECT *FROM customers

1. Go and obtain
from the database

2. Every field 4. Customers table

3. From the

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 438

The above function will retrieve from the database pointed to by the $dbRecords resource
the first surname from the table. Adding this function into our script gives us:

�?php
// File: example15-3.php

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“glassesrus”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

$strSurname � mysql_result($dbRecords, 0, “Surname”);
echo “�p�$strSurname�/p�”;
?�

The first time we run this script we get some output, which is:

Smith

Why Smith? Well, ‘Smith’ is the first surname in our customers table as shown in Figure 15.2.

Separating the database connection

Before we go any further with our scripts it is worth separating the database connectivity
part from our scripts and placing this in a separate file. The actual lines of code to which I
am referring are:

�?php
// File: database.php

15.3

15.3 SEPARATING THE DATABASE CONNECTION 439

15

Customers tableFIGURE 15.2

Id

Customers

1

2

3

4

5

6

7

8

9

10

11

12

Mrs

Miss

Mr

Mr

Mr

Ms

Mr

Mr

Mr

Mrs

Mr

Mr

Title Surname Firstname

Smith

Jones

Brown

Smith

Bell

Hall

Smith

Jones

Green

Smith

Bell

Brown

Lynne

Ann

Simon

David

Peter

Liz

Kevin

Jack

William

Lynne

Simon

Ian

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 439

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“glassesrus”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

?�

We suggest that you save these in a separate PHP file called ‘database.php’. The main script
will now need a require_once() function to include the ‘database.php’ script:

require_once(“database.php”);

Our script now looks like this:

�?php
// File: example15-4.php

require_once(“database.php”);

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

$strSurname � mysql_result($dbRecords, 0, “Surname”);
echo “�p�$strSurname�/p�”;
?�

440 CHAPTER 15 LINKING PHP TO A DATABASE

15

Don’t include any of the XHTML declarations in ‘database.php’ or
‘database2.php’ which we will come to shortly, as these would be
included in the main PHP script into which the files will be included.

NOTE

The reason for separating the database connectivity section is that it provides a convenient
means of moving your scripts from one database platform to another. Consider the
 following script:

�?php
// File: database2.php

$strLocation � “Home”;
//$strLocation � “Work”;

if ($strLocation �� “Home”) {
$dbLocalhost � mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());

mysql_select_db(“glassesrus”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

}
else {

$dbLocalhost � mysql_connect(“localhost”, “username”, “password”)
or die(“Could not connect: “ . mysql_error());

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 440

mysql_select_db(“anotherdatabase”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

}
?�

The above script has been written to allow the user to simply change the value of
$strLocation to be either ‘Home’ or ‘Work’. The ‘if ’ construct checks the value of this
 variable and makes the appropriate connection to the DBMS server. By keeping the ‘data-
base2.php’ (in this case) file separate, the developer only needs to make this one change
when moving the scripts from one development computer to another.

15.4 VIEWING RECORDS 441

15

It also has the advantage of keeping the scripts slightly shorter in our
examples!NOTE

Viewing records

Viewing a whole record

Returning to our previous script where we were able to display a single field within a
record, we should be able to deduce that we can display all the fields of the record by
accessing each field like this:

�?php
// File: example15-5.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

$strSurname � mysql_result($dbRecords, 0, “Surname”);
$strTitle � mysql_result($dbRecords, 0, “Title”);
$strFirstname � mysql_result($dbRecords, 0, “Firstname”);
$intId � mysql_result($dbRecords, 0, “Id”);

echo “�p�$intId $strTitle $strFirstname $strSurname�/p�”;
?�

The output from the above script is:

1 Mrs Lynne Smith

While this is useful what we may want to do is display all the records easily.

Viewing all returned records

To display all the records which are returned from mysql_query() we need to introduce a
new function called mysql_fetch_row():

array � mysql_fetch_row(resourceRecords);

15.4

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 441

The function requires a single parameter which is the resource identifier returned from the
mysql_result() function. It returns an array containing the database record. When this new
function is combined with a loop construct we can access and display all of the records
returned. Here is an example of it working:

�?php
// File: example15-6.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecord � mysql_fetch_row($dbRecords)) {
echo “�p�” . $arrRecord[0] . “ “;
echo $arrRecord[1] . “ “;
echo $arrRecord[2] . “ “;
echo $arrRecord[3] . “�/p�”;

}
?�

The above script invokes the mysql_fetch_row() function from within the ‘while’ loop
construct. This function returns a single database record and stores this in the array

442 CHAPTER 15 LINKING PHP TO A DATABASE

15

Displaying all customer recordsFIGURE 15.3

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 442

$arrRecord. When the last record has been returned, mysql_fetch_row() returns false and
the loop stops iterating. Within the loop, a number of ‘echo’ statements are used to display
the fields. The fields are stored within the $arrRecord array and are accessed through each
array element, 0, 1, 2 and 3.

The output from the above script is illustrated in Figure 15.3. While the mysql_
fetch_row() function can be used to access and display the database records it has a small
fault. As you can see the script has to refer to the separate fields using array numbers.
This does not make the code very easy to read and mistakes can be introduced. The
 function mysql_fetch_array() is an extended version of function mysql_fetch_row():

array � mysql_fetch_array(resourceRecords);

Like the mysql_fetch_row() function, the mysql_fetch_array() function requires a single
parameter which is the resource identifier returned from the mysql_result() function. It
returns an array containing the database record. The one thing that does differ from the
mysql_fetch_row() function is that we can refer to the database fields by name. Here is
an example:

�?php
// File: example15-7.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;

}
?�

The above script works exactly the same as the previous one and the output is identical.
The only difference is that the code is more readable as we are able to refer to the data
record fields by name.

Limiting the records returned

Selecting only certain records

So far we have introduced a single SQL statement which allows us to obtain all of the
records from a table. However, as you have probably guessed, SQL is far more powerful
than that. Consider the following SQL statement:

SELECT Surname FROM customers

This enhancement of the SELECT statement replaces the * symbol which retrieves all
fields with a list if the fields to retrieve. In this example only the ‘Surname’ is obtained.

15.5

15.5 LIMITING THE RECORDS RETURNED 443

15

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 443

We can modify our previous script to use this SQL statement for example:

�?php
// File: example15-8.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT Surname FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;

}
?�

Now when this script is run the output obtained is illustrated in Figure 15.4.

You will see that only the ‘Surname’ is displayed even though we have attempted to access the
array contents of ‘Title’ and ‘Firstname’. However, as only the ‘Surname’ was obtained by the
SQL statement, these do not exist and thus they contain no value and are not displayed.

444 CHAPTER 15 LINKING PHP TO A DATABASE

15

Displaying only surnamesFIGURE 15.4

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 444

Selecting a certain number of records

We can also modify the SELECT statement so that it uses the LIMIT option. We can use
LIMIT to select a certain number of records from a table:

SELECT * FROM customers LIMIT 3,4

The LIMIT option has two parameters: the first one represents the starting row (where 0
is the first row) and the second represents the number of records to be selected after the
starting row. So in the above example, the first record retrieved will be the fourth record
and only four will be obtained from that point. Here is the statement in a script:

�?php
// File: example15-9.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers LIMIT 3,4”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;

}
?�

The output from the above script is illustrated in Figure 15.5.

15.5 LIMITING THE RECORDS RETURNED 445

15

Limiting the records retrievedFIGURE 15.5

If you wish to obtain more than one field you can do so by listing them
in the SQL statement separated by a comma, for example:

SELECT Surname,Firstname FROM customers

NOTE

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 445

Searching for matching records

The SELECT statement can be further modified to obtain only records which match
 certain criteria. The WHERE attribute is used for this, for example:

SELECT * FROM customers WHERE Title � ‘Mr’

The WHERE attribute can be used to specify what to search for within the database
records. In the above example, only records which have a title of ‘Mr’ will be returned.
This is implemented in the following script:

�?php
// File: example15-10.php

require_once(“database2.php”);
$dbRecords � mysql_query(“SELECT * FROM customers WHERE Title �

‘Mr’ “, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;

}
?�

The output from the above script is illustrated in Figure 15.6.

The WHERE attribute can also be combined with the AND attribute, for example:

SELECT * FROM customers WHERE Title � ‘Mr’ AND Surname � ‘Smith’

446 CHAPTER 15 LINKING PHP TO A DATABASE

15

Obtaining only records containing ‘Mr’FIGURE 15.6

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 446

Here only those records who have the title ‘Mr’ and the surname ‘Smith’ are returned.
Furthermore the OR attribute can also be used:

SELECT * FROM customers WHERE Title � ‘Mr’ OR Title � ‘Mrs’

In the above example the records with a title of ‘Mr’ or ‘Mrs’ are returned. Finally, the use
of AND and OR can be combined, for example:

SELECT * FROM customers WHERE Title � ‘Mr’ AND Surname � ‘Smith’
OR Title � ‘Mrs’

This SELECT statement will obtain all records with the surname of ‘Smith’ and the title
of ‘Mr’ or the title of ‘Mrs’. The above SELECT statement has been implemented in the
following script:

�?php
// File: example15-11.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers WHERE Title � ‘Mr’ AND
Surname � ‘Smith’ OR Title � ‘Mrs’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());
while ($arrRecords � mysql_fetch_array($dbRecords)) {

echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;
}

?�

The output from the above script is illustrated in Figure 15.7.

15.5 LIMITING THE RECORDS RETURNED 447

15

Records that meet the WHERE criteriaFIGURE 15.7

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 447

Sorting records

The ORDER BY attribute can be used to sort the order in which records are obtained,
for example:

SELECT * FROM customers ORDER BY Surname DESC

The ORDER BY attribute is followed by the data field on which to sort the record. In the
above example, this is Surname. The attributes DESC or ASC can be specified to indicate
whether the sort should be in ascending or descending order. In other words from high to
low or low to high.

The following script illustrates the use of the ORDER BY attribute:

�?php
// File: example15-12.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers WHERE Title � ‘Mr’
ORDER BY Surname DESC”, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;

}
?�

448 CHAPTER 15 LINKING PHP TO A DATABASE

15

Sorted outputFIGURE 15.8

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 448

Accessing multiple tables

Viewing data from multiple tables

So far, all of our examples have concerned a single table, Customers. However, there is no
reason why we cannot access more than one table at the same time. Consider the follow-
ing script:

�?php
// File: example15-13.php

require_once(“database2.php”);

$dbRecords � mysql_query(“SELECT * FROM customers WHERE Title � ‘Mrs’ “,
$dbLocalhost)

or die(“Problem reading table: “ . mysql_error());
echo “�p�Customers:�/p�”;

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Title”] . “ “;
echo $arrRecords[“Surname”] . “ “;
echo $arrRecords[“Firstname”] . “�/p�”;

}
$dbRecords � mysql_query(“SELECT * FROM products WHERE Name � ‘Wine
Glass’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

echo “�p�Products:�/p�”;

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Name”] . “ “;
echo $arrRecords[“Description”] . “ “;
echo $arrRecords[“Quantity”] . “ “;
echo $arrRecords[“Cost”] . “�/p�”;

}
?�

The above script obtains all the records from the customer table where the title is ‘Mrs’
and displays them. It follows this by obtaining all the records from the product table where
the name is ‘Wine Glass’ and displays these. The output is shown in Figure 15.9.

15.6

15.6 ACCESSING MULTIPLE TABLES 449

15

The LIMIT, WHERE and ORDER BY attributes can be combined into a
single SELECT statement.NOTE

Closer examination of the script reveals that it also uses a WHERE attribute to obtain only
the records with the title ‘Mr’. Furthermore, the records have been sorted in DESCending
order. The output from the above script is illustrated in Figure 15.8.

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 449

While this may be useful, what would be really useful is if we could read a table of
 customers and then find out which customers actually bought products and display those.

Using records to read another table

We know from Chapter 14 that our database has the following tables:

● Customer
● Products
● Purchases
● purchaseProducts

What we are going to create now is a script which reads a customer record and then shows
the products that customer has purchased. Here is the script:

�?php
// File: example15-14.php

require_once(“database2.php”);

$strSurname � “Jones”;
$dbCustRecords � mysql_query(“SELECT * FROM customers WHERE Surname �

‘$strSurname’ “, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrCustRecords � mysql_fetch_array($dbCustRecords)) {
$intId � $arrCustRecords[“Id”];
echo “�p�Customer: “;
echo $arrCustRecords[“Title”] . “ “;
echo $arrCustRecords[“Surname”] . “ “;
echo $arrCustRecords[“Firstname”] . “�/p�”;

450 CHAPTER 15 LINKING PHP TO A DATABASE

15

Obtaining more than one table’s dataFIGURE 15.9

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 450

$dbPurRecords � mysql_query(“SELECT * FROM purchases WHERE
customers_Id � ‘$intId’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

while ($arrPurRecords � mysql_fetch_array($dbPurRecords)) {
$intPurId � $arrPurRecords[“Id”];
echo “�p�Purchased On: “;
echo $arrPurRecords[“Day”] . “/”;
echo $arrPurRecords[“Month”] . “/”;
echo $arrPurRecords[“Year”] . “�/p�”;

$dbProRecords � mysql_query(“SELECT * FROM purchaseProducts WHERE
purchases_Id � ‘$intPurId’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

while ($arrProRecords � mysql_fetch_array($dbProRecords)) {
$intProductId � $arrProRecords[“products_Id”];
echo “�p�” . $arrProRecords[“Quantity”] . “ “;

$dbProductRecords � mysql_query(“SELECT * FROM products WHERE
Id � ‘$intProductId’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

$arrProductRecord � mysql_fetch_array($dbProductRecords);
echo $arrProductRecord[“Name”] . “ (“ .

$arrProductRecord[“Description”] . “) at £”;
echo $arrProRecords[“Cost”] . “ each.�/p�”;
}

}
}
?�

The script begins by declaring a variable $strSurname which is set to the value ‘Jones’. This
is the surname of the person we are going to search for:

$strSurname � “Jones”;

A database query ensures that all customers with a surname equal to ‘Jones’ are stored in
resource $dbCustRecords:

$dbCustRecords � mysql_query(“SELECT * FROM customers WHERE Surname �

‘$strSurname’ “, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

A ‘while’ loop fetches each of these customer records and displays the customer details.
The customer Id key is copied into variable $intId for use later:

while ($arrCustRecords � mysql_fetch_array($dbCustRecords)) {
$intId � $arrCustRecords[“Id”];
echo “�p�Customer: “;
echo $arrCustRecords[“Title”] . “ “;
echo $arrCustRecords[“Surname”] . “ “;
echo $arrCustRecords[“Firstname”] . “�/p�”;

15.6 ACCESSING MULTIPLE TABLES 451

15

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 451

Within the ‘while’ loop, another database query selects all purchases which match the
 customer Id stored in $intId:

$dbPurRecords � mysql_query(“SELECT * FROM purchases WHERE
customers_Id � ‘$intId’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

A ‘while’ loop fetches these purchases and displays when they were purchased. The
 purchase id key is stored in a variable $intPurId:

while ($arrPurRecords � mysql_fetch_array($dbPurRecords)) {
$intPurId � $arrPurRecords[“Id”];
echo “�p�Purchased On: “;
echo $arrPurRecords[“Day”] . “/”;
echo $arrPurRecords[“Month”] . “/”;
echo $arrPurRecords[“Year”] . “�/p�”;

Within the ‘while’ loop, another database query selects all purchaseProducts which match
the purchase Id stored in $intPurId:

$dbProRecords � mysql_query(“ SELECT * FROM purchaseProducts
WHERE purchases_Id � ‘$intPurId’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

A ‘while’ loop fetches these purchase products and displays them. The products_Id field
is stored in $intProductId:

while ($arrProRecords � mysql_fetch_array($dbProRecords)) {
$intProductId � $arrProRecords[“products_Id”];
echo “�p�” . $arrProRecords[“Quantity”] . “ “;

Within the ‘while’ loop, yet another database query obtains all the products which match
the key stored in $intProductId (there is only one):

$dbProductRecords � mysql_query(“SELECT * FROM products WHERE
Id � ‘$intProductId’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

Because there is only one product record which matches the product id key then there is
no need for yet another loop and a simple mysql_fetch_array() function call returns all
fields of the record for display:

$arrProductRecord � mysql_fetch_array($dbProductRecords);
echo $arrProductRecord[“Name”] . “ (“ .

$arrProductRecord[“Description”] . “) at £”;
echo $arrProRecords[“Cost”] . “ each.�/p�”;

The output from the above script is illustrated in Figure 15.10.

Examination of Figure 15.10 reveals that Miss Ann Jones purchased one product on 3/9/2006
and three products on 22/9/2006. However, Mr Jack Jones did not purchase anything.

452 CHAPTER 15 LINKING PHP TO A DATABASE

15

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 452

Inserting, deleting and amending records

Inserting records

All of our examples thus far have illustrated reading and displaying database information.
It is now time to examine how we can create new database records. To do this we need to
introduce a new SQL statement, the INSERT INTO statement which looks like this:

INSERT INTO table (field1, field2, . . .) VALUES (‘value1’, ‘value2’, . . .)

With the above statement the name of the table into which we are going to insert some
data is specified after the INSERT INTO keywords. Next, each of the table field names
into which we are going to insert are specified, separated by commas and enclosed in
 parentheses. Following this, the keyword VALUES is followed by the values to be placed
in the field names, also separated by commas and enclosed in parentheses.

The above statement looks a little complex, however, we are able to simplify it a little
like so:

INSERT INTO table VALUES (‘value1’, ‘value2’, . . .)

The above INSERT INTO statement inserts the provided values into each database field
in the order in which they have been provided. The following script provides an example
of this:

�?php
// File: example15-15.php

require_once(“database2.php”);

15.7

15.7 INSERTING, DELETING AND AMENDING RECORDS 453

15

Output from multiple tablesFIGURE 15.10

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 453

$dbProdRecords � mysql_query(“INSERT INTO products VALUES (‘’, ‘Beer
Mug’, ‘600 ml Beer Mug’, ‘100’, ‘5.99’)”, $dbLocalhost)

or die(“Problem writing to table: “ . mysql_error());

$dbProdRecords � mysql_query(“SELECT * FROM products”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrProdRecords � mysql_fetch_array($dbProdRecords)) {
echo “�p�” . $arrProdRecords[“Id”] . “ “;
echo $arrProdRecords[“Name”] . “ “;
echo $arrProdRecords[“Description”] . “ “;
echo $arrProdRecords[“Quantity”] . “ “;
echo $arrProdRecords[“Cost”] . “�/p�”;

}
?�

The above script invokes a mysql_query() function with the SQL statement:

INSERT INTO products VALUES (‘’, ‘Beer Mug’, ‘600 ml Beer Mug’, ‘100’, ‘5.99’)

This SQL statement creates a new data record in the Products table. The script also reads
the Products table and displays the output, as illustrated in Figure 15.11.

454 CHAPTER 15 LINKING PHP TO A DATABASE

15

Added a new recordFIGURE 15.11

Note that the INSERT INTO data values included a blank data value as
the first data item. This is blank because the actual value inserted
into the data field is automatically incremented and handled by the
MySQL DBMS.

NOTE

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 454

Deleting records

We can delete records from tables using the mysql_query() function using the DELETE
FROM statement:

DELETE FROM table WHERE field�‘value’

The DELETE FROM query requires the name of the database table to be provided as well
as the field and its value which we are looking to delete. So for example if we wished to
delete customer Simon Brown, who has customer Id ‘3’ then we could write:

DELETE FROM customers WHERE Id�‘3’

15.7 INSERTING, DELETING AND AMENDING RECORDS 455

15

Note that we selected this customer carefully as they have made no
purchases. If they had made some purchases we would have to
ensure that we tidied up the Purchases and purchaseProducts tables
to ensure that there were no key references to a customer who no
longer exists!

NOTE

Before you start running scripts which delete database records it
would be a good time to export the database and make a backup of
its data!

NOTE

This SQL statement is illustrated in the following script:

�?php
// File: example15-16.php

require_once(“database2.php”);

$dbCustRecords � mysql_query(“DELETE FROM customers WHERE Id � ‘3’ “,
$dbLocalhost)

or die(“Problem writing to table: “ . mysql_error());

$dbCustRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrCustRecords � mysql_fetch_array($dbCustRecords)) {
echo “�p�” . $arrCustRecords[“Id”] . “ “;
echo $arrCustRecords[“Title”] . “ “;
echo $arrCustRecords[“Surname”] . “ “;
echo $arrCustRecords[“Firstname”] . “�/p�”;

}
?�

The above script deletes from the Customers table the record with Id � ‘3’. The contents
of the table after the deletion is then displayed. You can see illustrated in Figure 15.12 that
the record Id with a value of 3 is now missing.

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 455

It is possible to delete all records from a table using the following syntax:

DELETE FROM table

Deleting the records from an entire database table is illustrated in the following script:

�?php
// File: example15-17.php

require_once(“database2.php”);

$dbCustRecords � mysql_query(“DELETE FROM customers”, $dbLocalhost)
or die(“Problem writing to table: “ . mysql_error());

$dbCustRecords � mysql_query(“SELECT * FROM customers”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrCustRecords � mysql_fetch_array($dbCustRecords)) {
echo “�p�” . $arrCustRecords[“Id”] . “ “;
echo $arrCustRecords[“Title”] . “ “;
echo $arrCustRecords[“Surname”] . “ “;
echo $arrCustRecords[“Firstname”] . “�/p�”;

}
echo “�p�Nothing There!�/p�”;
?�

456 CHAPTER 15 LINKING PHP TO A DATABASE

15

Make sure you back up your database before deleting an entire table!

After deleting a recordFIGURE 15.12

NOTE

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 456

Amending records

The SQL UPDATE statement is used to modify the contents of an existing database record.

UPDATE table SET field1�‘value1’, field2�‘value2’ . . . WHERE
field�‘value’

The UPDATE statement requires you to specify the name of the table in which to
update, provide a list of the fields and their updated values and finally indicate which
records should be updated with these values. The following script illustrates updating a
 single record:

�?php
// File: example15-18.php

require_once(“database2.php”);

$dbCustRecords � mysql_query(“UPDATE products
SET Description � ‘250 ml Tall Glass’ WHERE Id � ‘6’ “, $dbLocalhost)

or die(“Problem updating table: “ . mysql_error());

$dbProdRecords � mysql_query(“SELECT * FROM products”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrProdRecords � mysql_fetch_array($dbProdRecords)) {
echo “�p�” . $arrProdRecords[“Id”] . “ “;
echo $arrProdRecords[“Name”] . “ “;
echo $arrProdRecords[“Description”] . “ “;
echo $arrProdRecords[“Quantity”] . “ “;
echo $arrProdRecords[“Cost”] . “�/p�”;

}
?�

In the above script the following SQL query is sent to the database:

UPDATE products SET Description � ‘250 ml Tall Glass’ WHERE Id � ‘6’

This alters the description of record 6 in the Products table. The output from the script is
illustrated in Figure 15.13.

You can of course produce an SQL statement which causes a number of records to be
updated, consider this script:

�?php
// File: example15-19.php

require_once(“database2.php”);

$dbCustRecords � mysql_query(“UPDATE products SET Name � ‘Beer and Lager Glass’
WHERE Name � ‘Beer Glass’ “, $dbLocalhost)

or die(“Problem updating table: “ . mysql_error());

$dbProdRecords � mysql_query(“SELECT * FROM products”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

15.7 INSERTING, DELETING AND AMENDING RECORDS 457

15

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 457

while ($arrProdRecords � mysql_fetch_array($dbProdRecords)) {
echo “�p�” . $arrProdRecords[“Id”] . “ “;
echo $arrProdRecords[“Name”] . “ “;
echo $arrProdRecords[“Description”] . “ “;
echo $arrProdRecords[“Quantity”] . “ “;
echo $arrProdRecords[“Cost”] . “�/p�”;

}
?�

The script updated all product records where the Name is “Beer Glass” to read “Beer and
Lager Glass”. The output from the above script is illustrated in Figure 15.14.

Counting records and checking existence

How many records are there?

The mysql_num_rows() function can be used to count the number of records in a table.
It looks like this:

numberRecords � mysql_num_rows (resourceQuery);

The function requires a resource handler returned from a mysql_query() function and
returns an integer of the number of records returned. Here is an example of the function

15.8

458 CHAPTER 15 LINKING PHP TO A DATABASE

15

Updating a single recordFIGURE 15.13

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 458

in a script:

�?php
// File: example15-20.php

require_once(“database2.php”);

$dbProdRecords � mysql_query(“SELECT * FROM products”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

$intProductCount � mysql_num_rows($dbProdRecords);

echo “�p�We currently have $intProductCount products�/p�”;

while ($arrProdRecords � mysql_fetch_array($dbProdRecords)) {
echo “�p�” . $arrProdRecords[“Id”] . “ “;
echo $arrProdRecords[“Name”] . “ “;
echo $arrProdRecords[“Description”] . “ “;
echo $arrProdRecords[“Quantity”] . “ “;
echo $arrProdRecords[“Cost”] . “�/p�”;

}
?�

The output from the above script is illustrated in Figure 15.15.

15.8 COUNTING RECORDS AND CHECKING EXISTENCE 459

15

Updating more than one recordFIGURE 15.14

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 459

Does a record exist?

The mysql_num_rows() function can also be used to determine if a record exists in the
database. Consider the following script:

�?php
// File: example15-21.php

require_once(“database2.php”);

$dbProdRecords � mysql_query(“SELECT * FROM products WHERE Name � ‘Shot Glass’ “,
$dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

$intProductCount � mysql_num_rows($dbProdRecords);

if ($intProductCount � 0)
echo “�p�Yes we have a Shot Glass�/p�”;

else
echo “�p�No, we have no Shot Glasses�/p�”;

?�

The script invokes a mysql_query() function to return all products which have the name
‘Shot Glass’:

$dbProdRecords � mysql_query(“SELECT * FROM products WHERE Name � ‘Shot Glass’ “,
$dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

The number of records returned are counted:

$intProductCount � mysql_num_rows($dbProdRecords);

460 CHAPTER 15 LINKING PHP TO A DATABASE

15

Counting recordsFIGURE 15.15

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 460

A simple if construct outputs an appropriate message:

if ($intProductCount � 0)
echo “�p�Yes we have a Shot Glass�/p�”;

else
echo “�p�No, we have no Shot Glasses�/p�”;

The output from the above script is:

Yes, we have a Shot Glass

Select and substring

The SUBSTRING attribute of the SELECT statement can be used to obtain records which
match the substring parameters, for example:

SELECT * FROM products WHERE substring(Name,1,4) � ‘Wine’

In the above example, the SELECT statement returns all records from the Products table
where the first four characters in the Name field equal ‘Wine’.

The following script illustrates the use of this command:

�?php
// File: example15-22.php

require_once(“database2.php”);

$dbProdRecords � mysql_query(“SELECT * FROM products WHERE
substring(Name,1,4) � ‘Wine’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

echo “�p�Products:�/p�”;
while ($arrRecords � mysql_fetch_array($dbProdRecords)) {

echo “�p�” . $arrRecords[“Id”] . “ “;
echo $arrRecords[“Name”] . “ “;
echo $arrRecords[“Description”] . “ “;
echo $arrRecords[“Quantity”] . “ “;
echo $arrRecords[“Cost”] . “�/p�”;

}
?�

The SELECT statement returns any and all records in the Products table where the
Name field begins with the value ‘Wine’. The output from this script is illustrated in
Figure 15.16.

15.9

15.9 SELECT AND SUBSTRING 461

15

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 461

462 CHAPTER 15 LINKING PHP TO A DATABASE

15

Records selected by a substringFIGURE 15.16

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 462

Exercises

15.1 Write a script which amends ‘example15-13.php’ so that a form interface allows the
user to enter a surname to search for.

15.2 Write a script which amends ‘example15-14.php’ so that appropriate messages are
displayed if no records are found at any stage. For example ‘No purchases made.’

15.3 Write a script which amends ‘example15-13.php’ so that instead of searching for a
customer, it searches for a particular product and then determines who has
 purchased it.

REFERENCES AND FURTHER READING 463

15

In this chapter, we began by explaining how to form a connection between a PHP script
and a MySQL database management system. We explained how to select a particular
database served by the management system and how to access the records stored in
the tables within the database. In addition to examining how to read database records,
we explained how to insert, delete and amend records to the database. We concluded
the chapter by explaining how to check if a record exists, determine the number of
records which conform to a selection and how to use the substring function to find
 partial record matches.

SUMMARY

References and further reading

astonishinc.com (2001) MySQL PHP Web Database Tutorial. http://blazonry.com/scripting/
linksdb/index.php

Brown, K. Web-based Databases Using PHP. http://www.keithjbrown.co.uk/vworks/php/
Refdev.com. PHP Database Tutorials. http://www.refdev.com/tutorials/PHP/Databases/

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 463

Stobart-15.qxp:Stobart-15 11/6/07 9:38 PM Page 464

CHAPTER 16

Introducing Object Orientation

LEARNING OBJECTIVES

● To understand the concept of object orientation

● To understand how to create class members and methods in PHP

● To understand how to access class members through the $this
pseudo-variable

● To understand how to create instances of classes

● To understand how to invoke methods from within classes

● To understand how to create classes which are stored in multiple
source files

● To understand the concept of a constructor and a destructor

● To understand that objects are passed by reference to functions

● To understand that objects can invoke other objects

● To understand that objects can be embedded within objects

Many modern programming languages now support the object-oriented paradigm and PHP is no
exception. Over the years, support for the object-oriented paradigm has improved and now, in
PHP 5, there is a new object model where the handling of objects has been completely rewritten,
allowing for better performance and more implemented features. Within the object-oriented
 paradigm, programmers model things known as classes and use them within a program by
 creating instances of these classes known as objects.

In this chapter, we describe the concept of object orientation and provide some examples of what
aspects of the paradigm PHP supports.

INTRODUCTION

465

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 465

What is object orientation?

Object orientation is a paradigm that encourages and helps to enable code reuse. Object
orientation also aims to minimize the impact of any programming changes, through a
 technique known as encapsulation. We have used a traditional structured programming
technique to solve the problems and to explain many of the ideas introduced in previous
chapters. With structured programming, we break a solution down into simple easy to
 program functions and group these functions together within the program to perform the
task required of the program.

While the structured programming (also known as functional) technique has proven
 successful, it is not perfect. For example, while it does help programmers reuse their code
to some extent, it doesn’t fundamentally help protect data from accidental change. You
see, with a functional approach local data may be declared within a function, but this may
be required as a parameter to another function to enable further processing. If the data
structures being passed from function to function are large and complex then it is easy for
a programmer to accidentally misuse some data which could result in data being altered
when it should not be.

The object-oriented paradigm takes a different approach to the design of data and their
associated functions. In an object-oriented design, data variables (known as data members)
and functions (known as methods) are wrapped up in what is known as a class. Collectively,
the methods and data members of a class are referred to as class members, which can be
confusing if you are not careful.

Data members cannot normally be accessed from outside the class (and neither can certain
types of methods) protecting them from the rest of the script and other classes. This
 ‘protection of class members’ is known as encapsulation. Usually, only the methods
 associated with the class can access and alter values held within data members and the
methods form an ‘interface’ to the class data members. Invoking methods in this way is
known as sending a message to the class. This is illustrated in Figure 16.1.

The object-oriented paradigm also encourages software reuse as it provides a means for
programmers to define new classes which are very similar to existing ones. The great thing
is that the programmer only needs to specify what the differences are between the new
class and the existing one. Data members and methods which are not defined as being
 private to a class are automatically accessible by the new class. This is known as inheritance
and is an extremely powerful and useful programming tool.

16.1

466 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Data members encapsulated by class methodsFIGURE 16.1

method method

method method

data members

m
eth

o
dm

et
h

o
d

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 466

The object-oriented paradigm also supports the concept of polymorphism. Polymorphism
is a concept where a number of related classes all have a method, which shares the same
name. For example, we could have created a number of classes, which draw different
shapes on the screen. All of the shapes have a method called draw () which allows them to
display themselves. The programmer can invoke the draw () method in any of the classes
knowing that it will result in the shape being displayed. However, the resulting image
 produced will be different depending on the shape class from which the message is sent.

Creating classes is not the end of the story. Classes are in effect templates, which define
what information can be held and what things they can do. Classes are essentially
 sophisticated ‘variable types’. In the same way that variables are designed to hold data of
a specific type and you can do certain things with a particular variable, we can build
 classes which can contain certain data (held in the data members) and have associated with
them certain methods which allow that data to be manipulated in different ways.
However, before you can use a variable you need to create an instance of one and the same
is true with classes. The class is the template and to use it you must create an instance of
the class with some specific data. An instance of a class is known as an object.

Most object-oriented programming languages will implement the features described
 previously. However, depending on the programming language you are using, the
 terminology used differs. For example, class methods, functions and procedures are all
used to describe the same thing. Likewise, data members, fields and variables are
terms used to mean the same thing.

PHP and object orientation

PHP keeps things simple and consistent with the other aspects of the PHP language. In
defining a class, the programmer specifies the data members and methods (variables and
functions), which are encompassed within the class. Instances of classes will be referred to
as objects.

Creating a class

The keyword used to define a class is ‘class’. This is followed by a class name, which can
be any name that isn’t a reserved word in PHP. The name is followed by a pair of curly
braces, which contain the definition of the class’s data members and methods:

class name {

}

If we were to create a class called person then we would begin with:

class person {

}

This class doesn’t do anything just yet because we haven’t assigned any methods or data
members to the class. Before we can do that we need to know about data member and
method visibility.

16.2

16.2 PHP AND OBJECT ORIENTATION 467

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 467

Visibility

The visibility of a method or data member can be defined by prefixing the declaration with
the keywords:

public
protected
private

‘Public’ items can be accessed everywhere, both within and outside of the class. ‘Protected’
limits access to classes which inherit from the class and also the original class in which the
item was defined. ‘Private’ limits the visibility of the method or data member only to the
class that defines the item.

If we include some data members in our class it is usual for them to be private as we want
to make use of the encapsulation feature of the object-oriented paradigm.

Class data members and methods

The following script illustrates our class with some data members defined. All class
 members must be placed inside the class definition, i.e. between the start and end braces:

class person {
private $strFirstname � “Simon”;
private $strSurname � “Stobart”;

}

Classes can also have methods associated with them. Each class method is defined in
 exactly the same way as a function defined outside of the class. Class methods must be
defined as public, private, or protected.

Consider our class with two member functions included:

class person {
private $strFirstname � “Simon”;
private $strSurname � “Stobart”;

function getFirstname() {
}
function getSurname() {
}

}

468 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Class members without any visibility specified in their declaration are
defined as public. That is why the two methods in the example above
appear not to have any visibility but they are, in fact, public.

NOTE

These functions don’t do anything at the moment as they contain no code. What we would
like them to do is return the values of data members $strFirstname and $strSurname

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 468

respectively. You would think that we could simply include a return statement like this in
method getFirstname():

function getFirstname() {
return $strFirstname;

}

Unfortunately this will not work. The above code fragment would be fine if we had
defined variable $strFirstname as part of the getFirstname() method. However it is not, it
is a data member (defined within the class but outside any class method). To solve this
problem we need to introduce a new pseudo-variable called $this.

$this

Pseudo-variable $this is a reference to the calling object (usually the object to which the
method or data member belongs). To access a data member of the class, we use $this,
 followed by the operator -� followed by the variable name, for example:

$this-�strFirstname;

16.2 PHP AND OBJECT ORIENTATION 469

16

Note that the $ symbol is in front of ‘this’ and not immediately in front
of the name of the data member.NOTE

We can now amend our class methods to make correct use of the $this pseudo-variable,
like this:

class person {
private $strFirstname � “Simon”;
private $strSurname � “Stobart”;

function getFirstname() {
return $this-�strFirstname;

}
function getSurname() {

return $this-�strSurname;
}

}

We now have a class which contains two data members and has two methods. These methods
have been designed to return the values of the respective data members. However, if you
were to view the output from the above script in a browser you would be very disappointed
as nothing would appear. This is because while we have correctly created a class we have not
used it. What we need to do now is to create an instance of this class, known as an object.

Using a class

To make use of our person class we need to create an object of that class. To do this we
need to use the keyword new. A new object must be created and assigned to a variable:

variable � new class

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 469

470 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

So for our example class we could write:

$objSimon � new person();

The above is essentially saying we wish to create a variable called $objSimon which is of
the type “person”. This is the same as creating a new variable:

$strName;

Now, if you remember our class has two methods: getFirstname() and getSurname(). To
invoke these methods, we use the syntax:

objectName-�methodName()

Therefore, with our example class, we write either of the following:

$objSimon-�getFirstname();
$objSimon-�getSurname();

In order to access the values returned by the methods we need to echo the result or copy
the returned values into variables. The following script contains our completed class,
 created object and object method calls:

�?php
// File: example16-1.php

class person {
private $strFirstname � “Simon”;
private $strSurname � “Stobart”;

function getFirstname() {
return $this-�strFirstname;

}
function getSurname() {

return $this-�strSurname;
}

}
$objSimon � new person;
echo “�p�Firstname: “ . $objSimon-�getFirstname() . “�/p�”;
echo “�p�Surname: “ . $objSimon-�getSurname() . “�/p�”;
?�

The output from the above script is illustrated in Figure 16.2.

So that works. If we want to alter the values of data members, $strFirstname and
$strSurname, we can try to write something like:

$objSimon-�strFirstname � “Tim”;

Unfortunately this will result in an error message being generated because the data mem-
ber strFirstname is defined as private and is therefore not available for access outside of the
class. What we need to do in order to allow us to alter an object’s data member values is
to write some methods to allow us to do this.

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 470

16.2 PHP AND OBJECT ORIENTATION 471

16

To do this we need to create a method like this:

function setFirstname($strSurname) {
$this-�strFirstname � $strSurname;

}

This method receives as an argument a variable containing a new surname and then assigns
this value to the data member $this-�strFirstname. Consider the following script which
defines two methods to allow the value of the data member to be altered and illustrates
this working:

�?php
// File: example16-2.php

class person {
private $strFirstname � “Simon”;
private $strSurname � “Stobart”;

Object outputFIGURE 16.2

If you were to change the visibility of the data member strFirstname
to be public then the above script would work correctly.NOTE

Setting an object’s membersFIGURE 16.3

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 471

function getFirstname() {
return $this-�strFirstname;

}

function getSurname() {
return $this-�strSurname;

}

function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}

function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}

}

$objSimon � new person;
echo “�p�Firstname: “ . $objSimon-�getFirstname() . “�/p�”;
echo “�p�Surname: “ . $objSimon-�getSurname() . “�/p�”;

$objSimon-�setFirstname(“Elizabeth”);
$objSimon-�setSurname(“Hall”);

echo “�p�Firstname: “ . $objSimon-�getFirstname() . “�/p�”;
echo “�p�Surname: “ . $objSimon-�getSurname() . “�/p�”;
?�

The output from the above script is illustrated in Figure 16.3.

Multiple object instances

Once a class has been created, any number of object instances of that class can be created.
This is exactly like having many variables of type integer within a script. Consider the
 following example:

�?php
// File: example16–3.php

class person {
private $strFirstname;
private $strSurname;

function getFirstname() {
return $this-�strFirstname;

}

function getSurname() {
return $this-�strSurname;

}

function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}

472 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 472

function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}
}

$objSimon � new person;
$objSimon-�setFirstname(“Simon”);
$objSimon-�setSurname(“Stobart”);
echo “�p�Firstname: “ . $objSimon-�getFirstname() . “�/p�”;
echo “�p�Surname: “ . $objSimon-�getSurname() . “�/p�”;

$objLiz � new person;
$objLiz-�setFirstname(“Liz”);
$objLiz-�setSurname(“Hall”);
echo “�p�Firstname: “ . $objLiz-�getFirstname() . “�/p�”;
echo “�p�Surname: “ . $objLiz-�getSurname() . “�/p�”;
?�

The above example creates a new person object called $objSimon and sets the firstname
and surname member values which it then displays through invoking the two methods. It
then creates a second person object called $objLiz and repeats the process for this new
object. The output produced is the same as that illustrated in Figure 16.3.

Invoking methods of a class from within the same class

Class methods can invoke other class methods. To do this they use the $this pseudo-
 variable again with the syntax:

$this-�functionName();

Consider the following script which illustrates this:

�?php
// File: example16-4.php

class person {
private $strFirstname;
private $strSurname;

function getFirstname() {
return $this-�strFirstname;

}

function getSurname() {
return $this-�strSurname;

}

function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}

function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}

16.2 PHP AND OBJECT ORIENTATION 473

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 473

474 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

private function display() {
echo “�p�Firstname: “ . $this-�strFirstname . “�/p�”;
echo “�p�Surname: “ . $this-�strSurname . “�/p�”;
}
function setDisplayFirstnameSurname($strFirstname, $strSurname) {

$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}
}

$objSimon � new person;
$objSimon-�setDisplayFirstnameSurname(“Simon”, “Stobart”);
?�

The above script creates a new method called display(), which displays the values of the
two data members:

private function display() {
echo “�p�Firstname: “ . $this-�strFirstname . “�/p�”;
echo “�p�Surname: “ . $this-�strSurname . “�/p�”;

}

Note that the display() method is declared as private, which stops it being invoked from
outside with a call such as this:

$objSimon-�display();

There is no real reason to define this method as private other than to
illustrate the use of a private method.NOTE

The script also creates a new method called setDisplayFirstnameSurname():

function setDisplayFirstnameSurname($strFirstname, $strSurname) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}

This method receives both the firstname and surname as arguments. It then invokes the
setFirstname() and setSurname() methods to assign the appropriate values to the class
data members. Finally it invokes method display() to output the current values of
these data members. The output produced is the same as shown in Figure 16.2.

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 474

Creating multiple classes

In addition to creating multiple instances of a class, you can also create multiple classes and
then multiple instances of each of these. Consider the following script:

�?php
// File: example16-5.php

class person {
private $strFirstname;
private $strSurname;

function getFirstname() {
return $this-�strFirstname;

}

function getSurname() {
return $this-�strSurname;

}

function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}

function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}

private function display() {
echo “�p�Firstname: “ . $this-�strFirstname . “�/p�”;
echo “�p�Surname: “ . $this-�strSurname . “�/p�”;

}

function setDisplayFirstnameSurname($strFirstname, $strSurname)
{

$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}
}

class vehicle {
private $strDescription;

function getDescription() {
return $this-�strDescription;

}

function setDescription($strDescription) {
$this-�strDescription � $strDescription;

}
}

16.2 PHP AND OBJECT ORIENTATION 475

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 475

$objSimon � new person;
$objSimon-�setDisplayFirstnameSurname(“Simon”, “Stobart”);
$objBike � new vehicle;
$objBike-�setDescription(“Bicycle”);
echo “�p�Vehicle: “ . $objBike-�getDescription() . “�/p�”;
?�

The above script creates the same person class as before but in addition also creates a
 vehicle class:

class vehicle {
private $strDescription;
function getDescription() {

return $this-�strDescription;
}

function setDescription($strDescription) {
$this-�strDescription � $strDescription;

}
}

The vehicle class contains a single data member called strDescription which holds a
description of the vehicle. It also contains two methods which allow the data member to
be set and retrieved from outside the class.

After the person object is created and displayed a vehicle object is created:

$objBike � new vehicle;
$objBike-�setDescription(“Bicycle”);
echo “�p�Vehicle: “ . $objBike-�getDescription() . “�/p�”;

The output from the above script is illustrated in Figure 16.4.

Multiple source files

You should notice that, even with these rather simple examples, the scripts are getting
quite long. To solve this problem many developers writing object-oriented applications
 create one PHP source file per class definition. This aids class reuse and script clarity.

16.3

476 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Output from multiple classesFIGURE 16.4

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 476

A series of includes or requires can be used to load the classes which are required. If
we split up our script to do this, we end up with the ‘person.php’ script for the
 person class:

�?php
// File: person.php

class person {
private $strFirstname;
private $strSurname;

function getFirstname() {
return $this-�strFirstname;

}

function getSurname() {
return $this-�strSurname;

}

function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}

function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}

private function display() {
echo “�p�Firstname: “ . $this-�strFirstname . “�/p�”;
echo “�p�Surname: “ . $this-�strSurname . “�/p�”;

}

function setDisplayFirstnameSurname($strFirstname, $strSurname) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}
}
?�

Then the ‘vehicle.php’ script contains the vehicle class:

�?php
// File: vehicle.php

class vehicle {
private $strDescription;

function getDescription() {
return $this-�strDescription;

}

16.3 MULTIPLE SOURCE FILES 477

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 477

function setDescription($strDescription) {
$this-�strDescription � $strDescription;

}
}
?�

Finally, the following script creates the object instances of the classes, which requires the
inclusion of the two scripts above:

�?php
// File: example16-6.php

require_once(“person.php”);
require_once(“vehicle.php”);

$objSimon � new person;
$objSimon-�setDisplayFirstnameSurname(“Simon”, “Stobart”);
$objBike � new vehicle;
$objBike-�setDescription(“Bicycle”);
echo “�p�Vehicle: “ . $objBike-�getDescription() . “�/p�”;
?�

The output from the above script is the same as shown in Figure 16.4.

However, while this is really useful it does have one annoying feature: you have to write a
long list of includes or requires statements at the beginning of each script (one for each
class). In PHP 5, this is no longer necessary. You may define an __autoload function which
is automatically called in case you are trying to use a class which hasn’t been defined yet.
The function looks like this:

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

The function is invoked each time a class is required but hasn’t been defined. We can insert
this function into our script:

�?php
// File: example16-7.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objSimon � new person;
$objSimon-�setDisplayFirstnameSurname(“Simon”, “Stobart”);
$objBike � new vehicle;
$objBike-�setDescription(“Bicycle”);
echo “�p�Vehicle: “ . $objBike-�getDescription() . “�/p�”;
?�

The output from the above script is the same as Figure 16.4.

478 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 478

16.4 CONSTRUCTORS AND DESTRUCTORS 479

16

Constructors and destructors

Constructors

You will have noticed by now that creating an object is a two-stage process. First we create
a new object then we call a function that populates that object with data, for example:

$objSimon � new person;
$objSimon-�setDisplayFirstnameSurname(“Simon”, “Stobart”);

There is however a way to perform these two operations in one. In order to do so, we need
to create a constructor. A constructor is a function, which is automatically called when you
create a new object and it looks like this:

void function __construct (various)

16.4

For backwards compatibility, if PHP 5 cannot find a __construct()
 function for a given class, it will search for the old-style constructor
function, by the name of the class.

NOTE

Let’s create a constructor function for our person class. It looks like this:

function __construct ($strFirstname, $strSurname) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}

The constructor function receives two arguments which are the values of firstname and
surname and assigns these to the appropriate data members. Our complete person class,
which we have now renamed to revisedperson now looks like this:

�?php
// File: revisedperson.php

class revisedperson {
private $strFirstname;
private $strSurname;

function __construct ($strFirstname, $strSurname) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}

function getFirstname() {
return $this-�strFirstname;

}

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 479

function getSurname() {
return $this-�strSurname;

}

function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}

function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}

private function display() {
echo “�p�Firstname: “ . $this-�strFirstname . “�/p�”;
echo “�p�Surname: “ . $this-�strSurname . “�/p�”;

}

function setDisplayFirstnameSurname($strFirstname, $strSurname) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);
$this-�display();

}
}
?�

We can create a constructor for the vehicle class also:

function __construct ($strDescription) {
$this-�strDescription � $strDescription;

}

Having created a constructor we can now combine the creation of the object and the pop-
ulation of data with the syntax:

new class (various);

So in our main script we now have the following:

�?php
// File: example16-8.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objSimon � new revisedperson(“Simon”, “Stobart”);

$objBike � new vehicle(“Bicycle”);
echo “�p�Vehicle: “ . $objBike-�getDescription() . “�/p�”;
?�

Note that, because our person script has a display() method which is invoked from the
 constructor, there is still not a need (unlike with the vehicle class) to invoke a method to

480 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 480

obtain the value of the object members. The output from the above script is the same as
in Figure 16.4.

Destructors

PHP 5 introduces a destructor concept similar to that of other object-oriented languages,
such as C��. The destructor method is called as soon as all references to a particular
object are removed or when the object is explicitly destroyed. The syntax of the
method is:

void function __destruct (void)

An example of a destructor function is:

function __destruct() {
echo “�p�Destroying Class�/p�”;

}

The above example doesn’t really do anything useful but tell us at what point the object
has been deleted. Destructors can be useful to include code to free up memory that the
object has been using, for example.

Arrays and objects

Objects that have been created can be treated in the same way as you would variables.
Therefore, you can easily create an array of objects, for example:

�?php
// File: example16-9.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objSimon � new revisedperson(“Simon”, “Stobart”);
$objLiz � new revisedperson(“Liz”, “Hall”);
$objIan � new revisedperson(“Ian”, “Walker”);
$objBilly � new revisedperson(“Billy”, “Lee”);
$objHayley � new revisedperson(“Hayley”, “West”);
$arrPeople � array($objSimon, $objLiz, $objIan, $objBilly, $objHayley);
foreach($arrPeople as $objThePerson)

echo($objThePerson-�display());
?�

The above script creates five objects of type ‘revisedperson’:

$objSimon � new revisedperson(“Simon”, “Stobart”);
$objLiz � new revisedperson(“Liz”, “Hall”);
$objIan � new revisedperson(“Ian”, “Walker”);
$objBilly � new revisedperson(“Billy”, “Lee”);
$objHayley � new revisedperson(“Hayley”, “West”);

16.5

16.5 ARRAYS AND OBJECTS 481

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 481

It then puts them in an array and uses a foreach loop to cycle through the array and
 display the contents of the object using the display() method:

$arrPeople � array($objSimon, $objLiz, $objIan, $objBilly, $objHayley);
foreach($arrPeople as $objThePerson)

echo($objThePerson-�display());

To allow the above script to work as intended we must change the visibility of the display()
method in the person class back to public so it looks like this:

function display() {
echo “Firstname: “ . $this-�strFirstname;
echo “�br/�Surname: “ . $this-�strSurname . “�br/�”;

}

We also removed the invocation to the display() method from within the constructor, so
that the constructor of the person class now looks like this:

function __construct ($strFirstname, $strSurname) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);

}

The output from the above script is illustrated in Figure 16.5.

482 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Objects and arraysFIGURE 16.5

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 482

Functions and objects

Objects can be passed to functions in the same way as variables. The following script
 illustrates something to be wary of however:

�?php
// File: example16-10.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

function change($objPerson){
$objPerson-�setFirstname(“Tim”);

}

$objSimon � new revisedperson(“Simon”, “Stobart”);
change($objSimon);
$objSimon-�display();
?�

In this example, you find a simple function called change() which receives a person object
and changes its firstname to ‘Tim’:

function change($objPerson){
$objPerson-�setFirstname(“Tim”);

}

Next an object is created, the member values are set to ‘Simon’ and ‘Stobart’ and the object
contents are displayed through the call to function display() within the constructor:

$objSimon � new revisedperson(“Simon”, “Stobart”);

Finally, function change() is invoked, passing the object, and then function display() is
invoked once more:

change($objSimon);
$objSimon-�display();

‘Okay’, I hear you cry, ‘I know the answer to this, the object is passed by value and there-
fore function change() is going to simply change a copy of the object and so the original
object when displayed the second time will still be as it was when it was first displayed’.
Well, the output from this script is illustrated in Figure 16.6.

If you thought that the object was going to be unchanged you were be wrong. In fact,
objects in PHP 5 are very special creatures and are passed around by reference without the
need for any special & characters.

16.6

16.6 FUNCTIONS AND OBJECTS 483

16

Objects in versions of PHP prior to version 5 are passed by value and
therefore behave like any other kind of variable.NOTE

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 483

This makes programming easier but you need to be aware that objects are handled
 differently from other data types.

Default arguments

Class functions, like their non-class counterparts, can include default argument values. This
allows a function to be called with an argument or without, knowing that if it is missing
the default value will be set. The constructor function in class revisedperson has been
rewritten to include default arguments:

function __construct ($strFirstname � “Simon”, $strSurname � “Stobart”) {
$this-�setFirstname($strFirstname);
$this-�setSurname($strSurname);

}

We shall call this new class ‘revisedagainperson’. Consider the following script:

�?php
// File: example16-11.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objSimon � new revisedagainperson(“Simon”, “Stobart”);
$objSimon-�display();

$objAnotherSimon � new person();
$objAnotherSimon-�display();
?�

Here an object called $objSimon is constructed using the arguments ‘Simon’ and ‘Stobart’.
Then, an object called $objAnotherSimon is constructed without any arguments but the
default values are used. The output from the above script is illustrated in Figure 16.7.

16.7

484 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Objects and function outputFIGURE 16.6

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 484

An object invoking another

An object may wish to interact with another object. To illustrate this consider the following
script which implements a ‘bucket’:

�?php
// File: bucket.php

class bucket {
private $intMaxVolume;
private $intCurrentVolume;
private $strName;

function __construct ($strName, $intMaxVol, $intCurrentVol) {
$this-�strName � $strName;
$this-�intMaxVolume � $intMaxVol;
$this-�intCurrentVolume � $intCurrentVol;
$this-�display();

}

function addLiquid($intVolume){
$this-�intCurrentVolume � $this-�intCurrentVolume � $intVolume;

}

function getName(){
return $this-�strName;

}

function getRemainingSpace() {
return $this-�intMaxVolume - $this-�intCurrentVolume;

}

function emptyDownDrain() {
$this-�intCurrentVolume � 0;
echo “�p�Emptying the “ . $this-�strName . “�/p�”;

}

function fillFromTap() {
$this-�intCurrentVolume � $this-�intMaxVolume;

16.8

16.8 AN OBJECT INVOKING ANOTHER 485

16

Default method valuesFIGURE 16.7

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 485

echo “�p�Filling “ . $this-�strName . “�/p�”;
}

function display() {
echo “�p�The “ . $this-�strName . “ contains “ .

$this-�intCurrentVolume . “ litres out of a maximum of “ .
$this-�intMaxVolume . “ litres�/p�”;

}

function transfer($objOtherBucket) {
$intSpace � $objOtherBucket-�getRemainingSpace();
if ($intSpace � $this-�intCurrentVolume) {

$objOtherBucket-�addLiquid($this-�intCurrentVolume);

echo “�p�Pouring “ . $this-�intCurrentVolume .
“ litres from the “ . $this-�strName . “ into the “ .
$objOtherBucket-�getName() . “�/p�”;

$this-�intCurrentVolume � 0;
}
else {

$objOtherBucket-�addLiquid($intSpace);
$this-�intCurrentVolume � $this-�intCurrentVolume - $intSpace;
echo “�p�Pouring “ . $intSpace . “ litres from the “

$this-�strName . “ into the “ . $objOtherBucket-�getName() .
“�/p�”;

}
$this-�display();
$objOtherBucket-�display();

}
}
?�

The above script implements a bucket class. It contains three data members which store
the maximum volume of water the bucket can hold, its current volume and the name
of the bucket:

class bucket {
private $intMaxVolume;
private $intCurrentVolume;
private $strName;

A constructor function is used to create the bucket and invokes a display() function to
show the bucket’s status:

function __construct ($strName, $intMaxVol, $intCurrentVol) {
$this-�strName � $strName;
$this-�intMaxVolume � $intMaxVol;
$this-�intCurrentVolume � $intCurrentVol;
$this-�display();

}

Function addLiquid() allows for additional liquid to be added to the bucket’s content:

function addLiquid($intVolume){

486 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 486

$this-�intCurrentVolume � $this-�intCurrentVolume � $intVolume;
}

Function getName() returns the name of the bucket:

function getName(){
return $this-�strName;

}

Function getRemainingSpace() calculates the amount of liquid that can be added to the bucket:

function getRemainingSpace() {
return $this-�intMaxVolume – $this-�intCurrentVolume;

}

Function emptyDownDrain() empties the contents of the bucket:

function emptyDownDrain() {
$this-�intCurrentVolume � 0;
echo “�p�Emptying the “ . $this-�strName . “�/p�”;

}

Function fillFromTap() fills the bucket completely:

function fillFromTap() {
$this-�intCurrentVolume � $this-�intMaxVolume;
echo “�p�Filling “ . $this-�strName . “�/p�”;

}

Function display() displays the current status of the bucket:

function display() {
echo “�p�The “ . $this-�strName . “ contains “ . $this-�intCurrentVolume . “

litres out of a maximum of “ . $this-�intMaxVolume . “ litres�/p�”;
}

Function transfer() is the most complex function of the class. It receives as an argument
another bucket object:

function transfer($objOtherBucket) {

The remaining space in the other bucket is calculated:

$intSpace � $objOtherBucket-�getRemainingSpace();

If the amount of space the other bucket can hold is greater than the current bucket’s content
then the contents of this bucket are added to the other one, a message is displayed and the
current volume of this bucket is set to zero:

if ($intSpace � $this-�intCurrentVolume) {
$objOtherBucket-�addLiquid($this-�intCurrentVolume);
echo “�p�Pouring “ . $this-�intCurrentVolume .
“litres from the “ . $this-�strName . “ into the “ .
$objOtherBucket-�getName() . “�/p�”;
$this-�intCurrentVolume � 0;

}

16.8 AN OBJECT INVOKING ANOTHER 487

16

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 487

Otherwise, the maximum amount of liquid that the other bucket can hold is passed, the
current volume of this bucket is reduced by that amount and a message detailing this is
output:

else {
$objOtherBucket-�addLiquid($intSpace);
$this-�intCurrentVolume � $this-�intCurrentVolume – $intSpace;
echo “�p�Pouring “ . $intSpace . “litres from the “ . $this-�strName . “

into the “ . $objOtherBucket-�getName() . “�/p�”;
}

Finally, the display methods in both the current bucket and the other bucket are invoked:

$this-�display();
$objOtherBucket-�display();

488 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Two buckets and four litres solutionFIGURE 16.9

Step 1: Fill 5-litre bucket Step 2: Fill 3-litre bucket from
5-litre bucket

Step 3: Empty 3-litre bucket

Step 6: Fill 3-litre bucket from
5-litre bucket

Step 4: Pour contents of 5-litre
bucket into 3-litre bucket

Step 5: Fill 5-litre bucket

3-litre bucket 5-litre bucket3-litre bucket3-litre bucket 5-litre bucket5-litre bucket

3-litre bucket 5-litre bucket3-litre bucket3-litre bucket 5-litre bucket5-litre bucket

Two bucketsFIGURE 16.8

3-litre bucket 5-litre bucket

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 488

16.9 OBJECTS WITHIN OBJECTS 489

16

Now suppose we want to create two bucket objects, one of 3 litres and the other of 5 litres,
so they look like those illustrated in Figure 16.8.

We can create them via the following statements:

$objFiveBucket � new bucket(“Five-litre bucket”,5,5);
$objThreeBucket � new bucket(“Three-litre bucket”,3,0);

Having got these two buckets we can use our script to implement an old problem: ‘If you
have a 3-litre bucket and a 5-litre bucket, how using only the buckets and a tap for water
can you end up with exactly four litres of water in the 5-litre bucket?’. Have a go at trying
to solve this problem yourself, but if you get stuck the solution to the problem is illustrated
in Figure 16.9.

This is what the solution looks like when implemented in a script:

�?php
// File: example16-12.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objFiveBucket � new bucket(“Five-litre bucket”,5,5);
$objThreeBucket � new bucket(“Three-litre bucket”,3,0);
$objFiveBucket-�transfer($objThreeBucket);
$objThreeBucket-�emptyDownDrain();
$objFiveBucket-�transfer($objThreeBucket);
$objFiveBucket-�fillFromTap();
$objFiveBucket-�transfer($objThreeBucket);
?�

The output from the above script is illustrated in Figure 16.10.

Objects within objects

An object can be embedded within another object as part of the class definition. Consider
the following script:

�?php
// File: lock.php

class lock {
private $strLockStatus;

function __construct ($strLockStatus) {
$this-�strLockStatus � $strLockStatus;

}

function display() {
echo “ and the lock is “ . $this-�strLockStatus . “�/p�”;

}
}
?�

16.9

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 489

This script implements a class called lock which has one data member, the status (locked
or unlocked) of the lock:

class lock {
private $strLockStatus;

A constructor creates the object:

function __construct ($strLockStatus) {
$this-�strLockStatus � $strLockStatus;

}

A method called display() outputs the status of the lock:

function display() {
echo “ and the lock is “ . $this-�strLockStatus . “�/p�”;

}
}
?�

Next, consider the following script:

�?php
// File: door.php

490 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Output from bucket classFIGURE 16.10

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 490

class door {

private $strdoorStatus;
private $objLock;

function __construct($strDoorStatus,$strLockStatus){
$this-�strDoorStatus � $strDoorStatus;
$this-�objLock � new lock($strLockStatus);
$this-�display();

}

function display(){
echo “�p�The door is “ . $this-�strDoorStatus;
$this-�objLock-�display();

}
}
?�

The above script implements a door class:

class door {

The class consists of two data members: $strDoorStatus which stores the status of the door
(open or closed) and $objLock which is a lock object (as defined previously):

private $strDoorStatus;
private $objLock;

A constructor function constructs the door status data member as well as creating a new
lock object. The constructor also invokes the display() method:

function __construct($strDoorStatus,$strLockStatus){
$this-�strDoorStatus � $strDoorStatus;
$this-�objLock � new lock($strLockStatus);
$this-�display();

}

The display() method displays the status of the door. It also invokes the lock object’s
 display method:

function display(){
echo “�p�The door is “ . $this-�strDoorStatus;
$this-�objLock-�display();

}
}
?�

16.9 OBJECTS WITHIN OBJECTS 491

16

Note the use of the $this-�objLock-�display() syntax to invoke the
display method, which belongs to the objLock object, which is part of
this object.

NOTE

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 491

The following script instantiates two doors with locks:

�?php
// File: example16-13.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}
$objDoor � new door(“Closed”,”Locked”);
$objDoor � new door(“Open”,”Unlocked”);
?�

The output from the above script is illustrated in Figure 16.11.

492 CHAPTER 16 INTRODUCING OBJECT ORIENTATION

16

Output from objects within objectsFIGURE 16.11

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 492

REFERENCES AND FURTHER READING 493

16

Exercises

16.1 Write a script which expands the functionality of the door and lock classes:

● A door can only be opened if the lock is unlocked.
● When a door is opened, a lock can be in the locked or unlocked position. However

a door cannot be closed if a lock is currently locked.

You can assume that when a door and lock are first created it is closed but unlocked.

16.2 Write a script which creates a class ‘electriccar’. The class should include two other
classes called engine and gearbox:

● The engine can be started or stopped.
● The gearbox can select forward, neutral and reverse.
● The electriccar class has a function speedup(), which increases the car’s speed by

5 mph each time it is invoked if the engine is switched on and the gearbox is not
in neutral.

● A function slowdown() reduces the speed of the car by 5 mph when invoked.
● If the gearbox is in neutral, the engine just revs, assuming that the car is switched

on of course!

In this chapter, we introduced the concept of object orientation. We examined how to
create classes in PHP and how to use these classes by creating objects. We illustrated
how classes could be created as separate source files and what advantages this brings.
We introduced the concept of constructors and destructors which can make creating
objects simpler. We concluded by illustrating how one object can invoke another and also
how one object can consist of another.

SUMMARY

References and further reading

Berard, E. (1998) Basic Object-Oriented Concepts. http://www.toa.com/pub/oobasics/
oobasics.htm

Developer Shed (2003) Beginning OO Programming in PHP. http://www.codewalkers.com/c/a/
Programming-Basics/ Beginning-Object-Oriented-Programming-in-PHP/

Hathaway, R. (2003) Object FAQ. http://www.objectfaq.com/oofaq2/
Wikipedia. Object Orientation. http://en.wikipedia.org/wiki/Object-oriented_programming

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 493

Stobart-16.qxp:Stobart-16 11/7/07 5:40 PM Page 494

CHAPTER 17

Object-Oriented Inheritance and
Polymorphism

LEARNING OBJECTIVES

● To understand how to create and be able to read class diagrams

● To understand the concept of class inheritance

● To understand and be able to use the scope resolution operator

● To understand the concept of class abstraction

● To understand the concept of polymorphism

● To understand and use static members and methods

● To understand class contents and type hinting

● To be able to compare objects and understand the different comparison
operators

● To understand the use of the Final keyword

● To understand the concept of object interfaces

In this chapter, we are going to further our exploration of the object-oriented paradigm.
We are going to continue where we left off in Chapter 16 and examine mainly the concepts
of inheritance and polymorphism. We shall conclude the chapter by looking at some of the
new object-oriented features that have been included in the latest release of the PHP
language.

INTRODUCTION

495

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 495

Diagramming classes

Before we continue by introducing more aspects of the object-oriented paradigm, it is
best that we introduce a simple diagramming convention which we use in some of the
 following examples to help illustrate the class design which we are using. The diagramming
notation illustrates classes as shown in Figure 17.1.

Figure 17.1 illustrates a simple rectangle which has been divided into three sections. In the
top section is the name of the class which the rectangle represents. In the middle section
are listed the data members which belong to the class. Finally, in the bottom section are
the methods which form part of the class. Figure 17.2 shows a class being represented in
this form.

Figure 17.2 illustrates the bucket class from Chapter 16. There are a number of things that
are worthy of note before continuing. Firstly, that the different sections of the rectangle
have been ‘stretched’ to accommodate the various numbers of items which have been
included in each section. The top section indicates the class name, bucket. The middle
 section lists all three data members of the class. Finally, the bottom section lists the
 methods. Note that the constructor method has been omitted for clarity (actually they are
often missed off anyway in the commercial world!). Where the methods receive arguments
these are specified and if a value is returned then the type of the value is specified.

While you may not think that such diagrams are all that useful, we hope you will
 appreciate their use when we introduce the concept of inheritance.

17.1

496 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

An example classFIGURE 17.2

Class bucket

Private $intMaxVolume
Private $intCurrentVolume
Private $strName

addLiquid($intVolume)
string getName()
int getRemainingSpace()
emptyDownDrain()
fillFromTap()
display()
transfer($objOtherBucket)

A class diagramFIGURE 17.1

Class Name

Members

Methords

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 496

Inheritance

A key strength of object orientation which we haven’t yet introduced is a class’s ability to
inherit properties from other classes. This ability saves the programmer time, reduces the
complexity of the solution and helps raise quality by reducing code duplication and thus
error introduction. We illustrate inheritance on our diagram through the use of an arrow,
as illustrated in Figure 17.3.

In Figure 17.3 we can see two classes. The first is called class ‘shape’. The second class is
called ‘rectangle’. The arrow from rectangle to shape indicates that rectangle ‘is a’ kind
of shape.

With inheritance, a class which inherits from another is able to access all the members and
methods of the class from which it inherits (if the class allows it) and is also able to add
and amend class members of its own.

The keyword ‘extends’ is used in a class definition to indicate that a class inherits
from another:

class className extends otherClassName

Therefore in the example in Figure 17.3, we would write the following to define our
 ‘rectangle’ class:

class rectangle extends shape {

}

Our ‘shape’ class is defined simply as:

class shape {

}

17.2

17.2 INHERITANCE 497

17

Inheritance – ‘Is A’FIGURE 17.3

rectangle

shape

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 497

Let’s begin by building these two classes. The shape class is going to contain the data
 members, $intHeight, $intWidth and $strGraphic to store the width, height and graphical
image used to represent the shape. The shape class is also going to contain three methods:
a constructor, a display() method, which will display the shape, and a resize() method
which will allow the shape to be resized. This is illustrated in Figure 17.4.

498 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Expanded shape and rectangle classesFIGURE 17.4

rectangle

shape

Private $intHeight
Private $intWidth
Private $strGraphic

__construct()
display()
Resize(&intHeight,$intWidth)

Note that we have included the __construct() function in the list
because of what we will be doing later. However, to keep things
 simple we have removed the constructor’s arguments.

NOTE

In PHP then, our shape class looks like this and should be saved as ‘shape.php’:

�?php
// File: shape.php

class shape {
private $intHeight;
private $intWidth;
private $strGraphic;

function __construct($intHeight, $intWidth, $strGraphic){
$this-�intHeight � $intHeight;
$this-�intWidth � $intWidth;
$this-�strGraphic � $strGraphic;

}

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 498

function display(){
$intHeight � $this-�intHeight;
$intWidth � $this-�intWidth;
$strGraphic � $this-�strGraphic;
echo “�p��img src�‘graphics/$strGraphic’ width�‘$intWidth’

height�‘$intHeight’ alt�‘$strGraphic’/��/p�”;
}

function resize($intHeight, $intWidth) {
$this-�intHeight � $intHeight;
$this-�intWidth � $intWidth;

}
}
?�

And our rectangle class is a very simple and should be saved as ‘rectangle.php’:

�?php
// File: rectangle.php

class rectangle extends shape {
}
?�

We need to create some images which we are going to use in this example and these are
listed in Figure 17.5.

Note that the square and rectangle images are both square. We stretch the rectangle to the
required shape in our script.

We can write a small script to use the classes:

�?php
// File: example17-1.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objRectangle-�display();
$objRectangle-�resize(50,100);
$objRectangle-�display();
?�

17.2 INHERITANCE 499

17

Graphical shape imagesFIGURE 17.5

square.gif rectangle.gif triangle.gif ellipse.gif

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 499

The above script uses the __autoload function introduced in Chapter 16 to load all classes
as required. It also refines an object of type rectangle and invokes the display() method:

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objRectangle-�display();

Next it resizes the object and redisplays it:

$objRectangle-�resize(50,100);
$objRectangle-�display();

The output from the above script is illustrated in Figure 17.6.

500 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Rectangle objectFIGURE 17.6

Note that the rectangle object worked just fine in both displaying and
resizing itself. This is because although the methods are not part of the
rectangle class, they are part of the shape class and the rectangle
inherited their use.

NOTE

The next thing that we are going to do is create a new class called ‘square’. We could define
this as inheriting from shape, but squares and rectangles are very similar, the only
 difference being that a square’s width and height are the same. We shall therefore build
a class called ‘square’ which inherits from ‘rectangle’, but only requires a single value to
specify its width and height. Because of this we are going to need to rewrite both the
 constructor and resize methods. This is illustrated in Figure 17.7.

The following script illustrates our square class, which should be saved as square.php:

�?php
// File: square.php

class square extends rectangle {

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 500

function __construct($intSize, $strGraphic){
__construct($intSize, $intSize, $strGraphic);

}

function resize($intSize) {
resize($intSize, $intSize);

}
}
?�

The above script consists of two methods, the first is the constructor which receives the square
size and the graphical image of the square as arguments. However, we run into a small prob-
lem which is that the dimensions of the square and the graphical image are held within the
shape class not the square class. However, to get around that problem all the constructor does
is invoke the constructor of the parent class (shape) passing it the size of the square twice (for
its width and height) followed by the graphic string. Likewise the resize method does a simi-
lar thing invoking the parent resize method passing it the value of size twice as arguments.

Unfortunately, we have run into a problem: this doesn’t work. It doesn’t have anything to do
with the fact that the parent class is rectangle not shape as we would expect the language
to keep on looking up the inheritance hierarchy until we found a matching method, but sim-
ply the fact that we don’t yet know what the syntax is for referring to a parent’s methods.
To do this we need to introduce the scope resolution operator.

17.2 INHERITANCE 501

17

Adding a squareFIGURE 17.7

rectangle

square

shape

Private $intHeight
Private $intWidth
Private $strGraphic

__construct()
display()
Resize($intHeight,$intWidth)

__construct()
Resize($intSize)

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 501

Scope resolution operator

The scope resolution operator (also called Paamayim Nekudotayim) or in simpler terms,
the double colon(::), is a token that allows access to static, constant and overridden
 members or methods of a class. We shall come back to this later. However, combined with
the keywords ‘self ’ and ‘parent’ it allows specific access to members and methods.

17.3

502 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Paamayim Nekudotayim means ‘double colon’ in Hebrew by the way,
we didn’t just make this up!NOTE

For example, we hit upon a snag of how to refer to a specific parent’s function which has the
same name as one in the current class. To specifically refer to the parent class we would write:

parent::

before the member or method name. So applying this to our square class above we end up with:

�?php
// File: square.php

class square extends rectangle {

function __construct($intSize, $strGraphic){
parent::__construct($intSize, $intSize, $strGraphic);

}

function resize($intSize) {
parent::resize($intSize, $intSize);

}
}
?�

We can show the square class works by amending our script which creates the instances of
the classes:

�?php
// File: example17-2.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objRectangle-�display();
$objRectangle-�resize(50,100);
$objRectangle-�display();

$objSquare � new square(100, “square.gif”);
$objSquare-�display();
?�

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 502

The above script now creates a square object as well as a rectangle and the output produced
is illustrated in Figure 17.8.

We can continue to show the power of inheritance by adding some more shapes to our
inheritance tree. These are shown in Figure 17.9. We have created two new shapes: a
 triangle and an ellipse. The script for these is currently very simple:

�?php
// File: ellipse.php

class ellipse extends shape {

}
?�

�?php
// File: triangle.php

class triangle extends shape {

}
?�

We can amend our script which creates the instances of the classes:

�?php
// File: example17-3.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objRectangle-�display();

17.3 SCOPE RESOLUTION OPERATOR 503

17

Square outputFIGURE 17.8

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 503

$objRectangle-�resize(50,100);
$objRectangle-�display();

$objSquare � new square(100, “square.gif”);
$objSquare-�display();

$objTriangle � new triangle(50,100, “triangle.gif”);
$objTriangle-�display();

$objEllipse � new ellipse(50,100, “ellipse.gif”);
$objEllipse-�display();
$objEllipse-�resize(100,50);
$objEllipse-�display();
?�

In addition to creating our square and rectangle and displaying those as before the script
creates and displays a triangle:

$objTriangle � new triangle(50,100, “triangle.gif”);
$objTriangle-�display();

It then creates an ellipse, displays it, resizes it and displays it again:

$objEllipse � new ellipse(50,100, “ellipse.gif”);
$objEllipse-�display();
$objEllipse-�resize(100,50);
$objEllipse-�display();

504 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Triangle and ellipse classesFIGURE 17.9

Rectangle Triangle Ellipse

Square

shape

Private $intHeight
Private $intWidth
Private $strGraphic

__construct()
display()
Resize($intHeight,$intWidth)

__construct()
Resize($intSize)

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 504

The output from the above script is illustrated in Figure 17.10.

We have now reached the stage where we have an inheritance structure consisting of four
different shapes. It is now time to add a new method, one which is able to calculate the
area of the shape in question. We cannot simply include a single method in the shape class
as the formula to calculate a shape’s area differs from shape to shape. We are going to have
to include a method for each of our shapes. Table 17.1 lists the formulae for calculating
the area of our shapes.

17.3 SCOPE RESOLUTION OPERATOR 505

17

Triangles, ellipses and moreFIGURE 17.10

Shape area calculationsTABLE 17.1

Shape Formula Code

Rectangle Width * Height $intArea � $intWidth * $intHeight;
Square As for rectangle Can inherit from rectangle
Triangle Width * Height/2 $intArea � $intWidth * $intHeight/2;
Ellipse �* Width/2 * Height/2 round(Pi() * ($intWidth/2) * ($intHeight/2));

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 505

Figure 17.11 illustrates where our area() methods are going to be included in our class
hierarchy.

An examination of Figure 17.11 will reveal that not only has the area() method been
included in the rectangle, triangle and ellipse classes but also that two new methods,
getWidth and getHeight, have been included in the shape class. These are required as the
area() methods need to be able to access the values of $intWidth and $intHeight which
are part of the shape class.

Let’s have a look at the script, beginning with the shape class:

�?php
// File: shape.php

class shape {

private $intHeight;
private $intWidth;
private $strGraphic;

506 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Area() methodsFIGURE 17.11

Rectangle

area()

Triangle

area()

Ellipse

area()

Square

shape

Private $intHeight
Private $intWidth
Private $strGraphic

__construct()
display()

int getWidth()
int getHeight()

Resize($intHeight,$intWidth)

__construct()
Resize($intHeight,$intWidth)

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 506

function getHeight(){
return $this-�intHeight;

}

function getWidth(){
return $this-�intWidth;

}

function __construct($intHeight, $intWidth, $strGraphic){
$this-�intHeight � $intHeight;
$this-�intWidth � $intWidth;
$this-�strGraphic � $strGraphic;

}

function display(){
$intHeight � $this-�intHeight;
$intWidth � $this-�intWidth;
$strGraphic � $this-�strGraphic;
echo “�p��img src � ‘graphics/$strGraphic’ width � ‘$intWidth’

height � ‘$intHeight’ alt � ‘$strGraphic’/��/p�”;
}

function resize($intHeight, $intWidth) {
$this-�intHeight � $intHeight;
$this-�intWidth � $intWidth;
}

}
?�

An examinination of the script will reveal the two methods getHeight() and getWidth()
which return the values of data members $intHeight and $intWidth:

function getHeight(){
return $this-�intHeight;

}

function getWidth(){
return $this-�intWidth;

}

The rectangle class now includes an area() method:

�?phpF
// File: rectangle.php

class rectangle extends shape {

function area() {
$intWidth � parent::getWidth();
$intHeight � parent::getHeight();
$intArea � $intWidth * $intHeight;
echo “�p�Area is $intArea�/p�”;

}
}
?�

17.3 SCOPE RESOLUTION OPERATOR 507

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 507

As does the triangle class:

�?php
// File: triangle.php

class triangle extends shape {

function area() {
$intWidth � parent::getWidth();
$intHeight � parent::getHeight();
$intArea � $intWidth * $intHeight/2;
echo “�p�Area is $intArea�/p�”;

}
}
?�

So does the ellipse class:

�?php
// File: ellipse.php

class ellipse extends shape {

function area() {
$intWidth � parent::getWidth();
$intHeight � parent::getHeight();
$intArea � round(Pi() * ($intWidth/2) * ($intHeight/2));
echo “�p�Area is $intArea�/p�”;

}
}
?�

Our example script can now be modified to invoke this method:

�?php
// File: example17-4.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objRectangle-�display();
$objRectangle-�resize(50,100);
$objRectangle-�display();
$objRectangle-�area();

$objSquare � new square(100, “square.gif”);
$objSquare-�display();

$objTriangle � new triangle(50,100, “triangle.gif”);
$objTriangle-�display();
$objTriangle-�area();

508 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 508

$objEllipse � new ellipse(50,100, “ellipse.gif”);
$objEllipse-�display();
$objEllipse-�area();
?�

The output from the above script is illustrated in Figure 17.12.

Class abstraction

Sometimes we want to define a class which is used purely to help with the inheritance
structure, but we don’t want programmers to be able to create instances of that class. The
shape class is a good illustration. Currently someone could do this:

$objThing � new shape(100,100, “thing.gif”);

We don’t want someone to be able to create an instance of shape as it doesn’t have an
area() method for example and it will cause us all sorts of problems. However, help is at

17.4

17.4 CLASS ABSTRACTION 509

17

Areas of shapesFIGURE 17.12

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 509

hand as PHP allows us to define a class as being abstract:

abstract class className {

}

We amend our shape class so that it reads:

abstract class shape {

}

This will prevent anyone trying to create instances of the shape class.

Polymorphism

Polymorphism is Greek and it means ‘Many forms’. We have actually implemented poly-
morphic methods in our previous inheritance example but may not have actually realized
this or what potential they have. Polymorphic functions are those which have the same
name in a class inheritance structure but are redefined from class to class, thus enabling
the behaviour of that class to be different. In our example, the area() method exhibits
polymorphism as it has the same name and attributes from class to class, but uses a
 different formula to calculate the area of the shape concerned.

The power of polymorphic methods can be seen in the following example:

�?php
// File: example17-5.php

function __autoload($class_name) {
require_once $class_name . ‘.php’;

}

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objSquare � new square(100, “square.gif”);
$objTriangle � new triangle(50,100, “triangle.gif”);
$objEllipse � new ellipse(50,100, “ellipse.gif”);

$arrShapes � array
($objRectangle,$objSquare,$objTriangle,$objEllipse);

foreach ($arrShapes as $objShape){
$objShape-�display();
$objShape-�area();

}
?�

The above script creates four different shape objects:

$objRectangle � new rectangle(100,50, “rectangle.gif”);
$objSquare � new square(100, “square.gif”);
$objTriangle � new triangle(50,100, “triangle.gif”);
$objEllipse � new ellipse(50,100, “ellipse.gif”);

17.5

510 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 510

It then creates an array and places each of the objects within the array:

$arrShapes � array
($objRectangle,$objSquare,$objTriangle,$objEllipse);

A foreach loop is then used to iterate around the array extracting each object one at a time.
The display() and area() methods of the object are invoked:

foreach ($arrShapes as $objShape){
$objShape-�display();
$objShape-�area();

}

The foreach loop works flawlessly with the output from the display() and area() methods
being displayed, as illustrated in Figure 17.13. The polymorphic method properties mean
that the programmer doesn’t have to worry about which object is being returned from the
array as they know that simply invoking the method will result in the correct display() and
area() method being performed.

Static members and methods

Declaring class members or methods as static makes them accessible without needing
an instantiation of the class. A member declared as static cannot be accessed with an

17.6

17.6 STATIC MEMBERS AND METHODS 511

17

PolymorphismFIGURE 17.13

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 511

512 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

instantiated class object (though a static method can). Consider the following script:

�?php
// File: example17-6.php

class noInstancesRequiredClass {

public static $strName � “Simon Stobart”;
public static function aStaticMethod() {

echo “�p�” . self::$strName . “�/p�”;
}

}
echo “�p�” . noInstancesRequiredClass::$strName . “�/p�”;
noInstancesRequiredClass::aStaticMethod();

$objExample � new noInstancesRequiredClass;
$objExample-�aStaticMethod();

?�

The above script defines a class called ‘noInstancesRequiredClass’ and within this creates
a static member variable called $strName:

class noInstancesRequiredClass {
public static $strName � “Simon Stobart”;

The class also contains a single static method called ‘aStaticMethod’ which will display the
value of the static member:

public static function aStaticMethod() {
echo “�p�” . self::$strName . “�/p�”;

}

Note that the method uses the self:: scope operator to access the member.

Because static methods are callable without an instance of the object
created, the pseudo-variable $this is not available inside the method
declared as static.

NOTE

Outside the class the scope operator is used to access the value of the static member
 without any need to instantiate the class:

echo “�p�” . noInstancesRequiredClass::$strName . “�/p�”;

It addition the static method is also invoked in a similar way:

noInstancesRequiredClass::aStaticMethod();

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 512

Finally, the class is instantiated then a call to aStaticMethod is made to illustrate that this
also works:

$objExample � new noInstancesRequiredClass;
$objExample-�aStaticMethod();

17.7 CLASS CONSTANTS 513

17

Static properties cannot be accessed through the object using the
arrow operator -�.NOTE

The output from the above script is:

Simon Stobart
Simon Stobart
Simon Stobart

Class constants

PHP classes support the inclusion of constant values. Once defined these remain the same
and are unchangeable. Constants differ from normal data members in that you don’t use
the $ symbol to declare or use them. Consider the following script:

�?php
// File: example17-7.php

class constantClass {

const strName � “Simon Stobart”;

function showConstant() {
echo “�p�” . self::strName . “�/p�”;

}
}

echo “�p�” . constantClass::strName . “�/p�”;

$objExample � new constantClass;
$objExample-�showConstant();
?�

In the above script, constantClass is defined and a const member is created:

class constantClass {

const strName � “Simon Stobart”;

17.7

Constant members do not use the $ symbol to define them.NOTE

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 513

A method showConstant() is defined and outputs the value of the constant. Note that the
self:: scope operator is used to access the constant member as the -� operator will not work:

function showConstant() {
echo “�p�” . self::$strName . “�/p�”;

}

Outside the class, the scope operator is used to access the value of the constant member
without any need to instantiate the class:

echo “�p�” . constantClass::strName . “�/p�”;

Finally, the class is instantiated then a call to method showConstant() is made to illustrate
that this also works:

$objExample � new constantClass;
$objExample-�showConstant();

The output from the above script is:

Simon Stobart
Simon Stobart

Type hinting

PHP 5 introduces the concept of type hinting. Functions can force parameters to be objects
(by specifying the name of the class in the function prototype) or arrays. Consider the
 following script:

�?php
// File: example17-8.php

class typeHintingClass {

private $arrNames � array();

function __construct(array $arrNames) {
$this-�arrNames � $arrNames;

}

function showContents() {
foreach ($this-�arrNames as $arrItem)

echo “�p�$arrItem�/p�”;
}

function showOtherClass(typeHintingClass $objOther) {
$objOther-�showContents();

}
}

$arrNames � array(“Simon”,”Alan”,”Fred”);
$arrColours � array(“Red”,”Green”,”Blue”,”Yellow”);

$objNames � new typeHintingClass($arrNames);
$objNames-�showContents();

17.8

514 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 514

$objColours � new typeHintingClass($arrColours);
$objNames-�showOtherClass($objColours);
?�

The script begins by creating a class called typeHintingClass, which contains a single data
member array:

class typeHintingClass {
private $arrNames � array();

A constructor function populates the array member:

function __construct(array $arrNames) {
$this-�arrNames � $arrNames;

}

Method showContents() displays the contents of the array:

function showContents() {
foreach ($this-�arrNames as $arrItem)

echo “�p�$arrItem�/p�”;
}

Method showOtherClass() receives an object and then invokes method showContents()
to display its members’ contents. Type hinting is used in the method argument to specify
that the method is expecting a typeHintingClass object to be received:

function showOtherClass(typeHintingClass $objOther) {
$objOther-�showContents();

}

Two arrays are created:

$arrNames � array(“Simon”,”Alan”,”Fred”);
$arrColours � array(“Red”,”Green”,”Blue”,”Yellow”);

An object is created and its contents displayed:

$objNames � new typeHintingClass($arrNames);
$objNames-�showContents();

Another object is created and then the previous object is passed the new object for display:

$objColours � new typeHintingClass($arrColours);
$objNames-�showOtherClass($objColours);
}

17.8 TYPE HINTING 515

17

Type hints can only be of the object and array (since PHP 5.1) types. If
your computer is not running PHP 5.1 or newer, the above script will
not work.

NOTE

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 515

You can illustrate the type hinting aspect of this code by trying to insert the following line
of script:

$objNames-�showOtherClass(“Not an object!”);

This will cause an error as it is a string, not an array which is being passed.

The output from the above script is illustrated in Figure 17.14.

Comparing objects

In PHP 5, object comparison is more complicated than in previous versions of the language.
Objects can be compared in two different ways. Firstly, when using the comparison
 operator (��), two object instances are equal if they have the same attributes and values
and are instances of the same class. Secondly, when using the identity operator (���),
object variables are identical if and only if they refer to the same instance of the same class.
Consider the following example:

�?php
// File: example17-9.php

class Person {

public $strName;

function __construct ($strName) {
$this-�strName � $strName;

}

17.9

516 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Type hintingFIGURE 17.14

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 516

}

class AnotherPerson {

public $strName;

function __construct ($strName) {
$this-�strName � $strName;

}
}

$objSimon � new Person(“Simon”);
$objSimon2 � new Person(“Simon”);
$objSimon3 � new AnotherPerson(“Simon”);
$objSimon4 � $objSimon;

if ($objSimon �� $objSimon2)
echo ‘�p�$objSimon �� $objSimon2�/p�’;

if ($objSimon �� $objSimon3)
echo ‘�p�$objSimon �� $objSimon3�/p�’;

if ($objSimon �� $objSimon4)
echo ‘�p�$objSimon �� $objSimon4�/p�’;

if ($objSimon ��� $objSimon2)
echo ‘�p�$objSimon ��� $objSimon2�/p�’;

if ($objSimon ��� $objSimon3)
echo ‘�p�$objSimon ��� $objSimon3�/p�’;

if ($objSimon ��� $objSimon4)
echo ‘�p�$objSimon ��� $objSimon4�/p�’;

?�

This script begins by creating a Person class, which contains a single data member
$strName and a constructor function:

class Person {

public $strName;

function __construct ($strName) {
$this-�strName � $strName;

}
}

Another class called AnotherPerson is created which contains exactly the same data mem-
bers as the Person class:

class AnotherPerson {

public $strName;

function __construct ($strName) {

17.9 COMPARING OBJECTS 517

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 517

$this-�strName � $strName;
}

}

Four objects are created. The first and second are of class Person:

$objSimon � new Person(“Simon”);
$objSimon2 � new Person(“Simon”);

The third is of class AnotherPerson:

$objSimon3 � new AnotherPerson(“Simon”);

The fourth is of type Person as it is created from an instance already created:

$objSimon4 � $objSimon;

$objSimon and $objSimon2 are compared using the comparison operator (��) and the
result is true:

if ($objSimon �� $objSimon2)
echo ‘�p�$objSimon �� $objSimon2�/p�’;

$objSimon and $objSimon3 are compared using the comparison operator (��) and the
result is false as the classes are not the same:

if ($objSimon �� $objSimon3)
echo ‘�p�$objSimon �� $objSimon3�/p�’;

$objSimon and $objSimon4 are compared using the comparison operator (��) and the
result is true:

if ($objSimon �� $objSimon4)
echo ‘�p�$objSimon �� $objSimon4�/p�’;

$objSimon and $objSimon2 are compared using the identity operator (���) and the
result is false as they are not the same instance of the object:

if ($objSimon ��� $objSimon2)
echo ‘�p�$objSimon ��� $objSimon2�/p�’;

$objSimon and $objSimon3 are compared using the identity operator (���) and the
result is false as they are not the same instance of the object:

if ($objSimon ��� $objSimon3)
echo ‘�p�$objSimon ��� $objSimon3�/p�’;

$objSimon and $objSimon4 are compared using the identity operator (���) and the
result is true:

if ($objSimon ��� $objSimon4)
echo ‘�p�$objSimon ��� $objSimon4�/p�’;

?�

518 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 518

The output from the above script is illustrated in Figure 17.15.

The ‘final’ keyword

The ‘final’ keyword can be prefixed before a class method and prevents a child class from
overriding the method. Consider the following example:

�?php
// File: example17-10.php

class Person {

private $strName;

function __construct ($strName) {
$this-�strName � $strName;

}

final function showName() {
echo “�p�” . $this-�strName . “�/p�”;

}
}
class Student extends Person {

function showName() {

}
}
?�

The above example creates a Person class with a constructor and showName() method
which has the prefixed keyword final:

class Person {

private $strName;

function __construct ($strName) {
$this-�strName � $strName;

}

17.10

17.10 THE ‘FINAL’ KEYWORD 519

17

Comparing objectsFIGURE 17.15

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 519

final function showName() {
echo $this-�strName;

}
}

A second class Student extends Person and includes a showName() method:

class Student extends Person {

function showName() {

}

However, the following error message is generated as the final keyword prevents the
showName() method from being overridden:

Fatal error: Cannot override final method Person::showName() in c:\wamp\www\lesson
1\example17-10.php on line 22

520 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

All of the methods declared in an interface must be public.NOTE

If the final keyword is placed before the class keyword, like this:

final class Person {
}

then the class itself cannot be extended.

NOTE

Object interfaces

An object interface is a means to enable you to create a script which specifies the methods
a class must have but without the need to define exactly how these methods are to be
built. Interfaces are defined using the interface keyword, in the same way as a basic class
but differ in that none of the methods have their contents defined.

17.11

Consider the following script:

interface iPerson {

public function showName();
public function setSurname($strSurname);
public function setFirstname($strFirstname);

The above script specifies an interface called iPerson and specifies that its implementation
should contain three member methods. The script doesn’t actually do anything at
the moment.

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 520

To implement an interface, the implements operator is used. All methods in the interface
must be implemented within a class otherwise an error is produced.

The following script enhances the previous one by adding an implementation of the
 interface class:

�?php
// File: example17-11.php

interface iPerson {

public function showName();
public function setSurname($strSurname);
public function setFirstname($strFirstname);

}

class Person implements iPerson {

private $strSurname;
private $strFirstname;

public function showName() {
echo “�p�” . $this-�strFirstname;
echo “ “;
echo $this-�strSurname . “�/p�”;

}

public function setSurname($strSurname) {
$this-�strSurname � $strSurname;

}

public function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}
}

$objSimon � new Person;
$objSimon-�setSurname(“Stobart”);
$objSimon-�setFirstname(“Simon”);
$objSimon-�showName();
?�

The above script implements the interface like so:

class Person implements iPerson {

private $strSurname;
private $strFirstname;

public function showName() {
echo “�p�” . $this-�strFirstname;
echo “ “;
echo $this-�strSurname . “�/p�”;

}

public function setSurname($strSurname) {
$this-�strSurname � $strSurname;

17.11 OBJECT INTERFACES 521

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 521

}

public function setFirstname($strFirstname) {
$this-�strFirstname � $strFirstname;

}
}

It then creates an instance of the class to illustrate that it works correctly:

$objSimon � new Person;
$objSimon-�setSurname(“Stobart”);
$objSimon-�setFirstname(“Simon”);
$objSimon-�showName();

The output from the above script is:

Simon Stobart

522 CHAPTER 17 OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

17

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 522

17

REFERENCES AND FURTHER READING 523

Exercises

17.1 Add a new class to the shape class hierarchy called circle. This could inherit from
ellipse. The area of a circle can be calculated by the formula:

� * r2

We can replace this with:

� * ($intWidth * $intWidth)

17.2 Write a class inheritance structure which implements the following classes:

Vehicle
Car
Hybrid Car
Boat
Bicycle

Vehicle should be an abstract class. Car, Boat and Bicycle inherit from Vehicle.
Hybrid Car inherits from car. A hybrid car is one which is capable of running on
 batteries and petrol. The following are various members; you will need to consider
where they fit into the hierarchy:

intWeight
intLength
intTopSpeed
intDisplacement
intRemaingFuelLitres
intRemaingBatteryLife
strDescription

You should create a display() method which will display all details about the
 instantiated vehicle. You will need to create other support methods also, such as a
constructor and some get member methods.

In this chapter, we began by introducing inheritance and polymorphism.

We then examined some of the new object-oriented features that have been included
in the latest release of the PHP language such as class constants, type hinting and the
use of the ‘final’ keyword. We concluded the chapter by examining PHP implementation
of object interfaces.

SUMMARY

References and further reading

Day, D. (2005) The Practicality of OO PHP. http://www.onlamp.com/pub/a/php/2005/07/28/
oo_php.html

Refdev.com PHP Object Oriented Tutorials. http://www.refdev.com/tutorials/PHP/Object_Oriented/
Yank, K. (2002) Object Oriented PHP: Paging Result Sets. http://www.sitepoint.com/article/php-paging-

result-sets

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 523

Stobart-17.qxp:Stobart-17 11/6/07 10:00 PM Page 524

525

CHAPTER 18

Combining Ajax and PHP – Making
the Web More Dynamic

LEARNING OBJECTIVES

● Understand the JavaScript syntax required to interface to a PHP application

● Be able to use PHP with Ajax to create dynamic web applications

● Understand and be able to implement a simple calculator example

● Understand and be able to implement a dynamic stock example

● Understand and be able to implement a photo thumbnail example, with
image zoom

● Understand and be able to implement a dynamically changing histogram
example

● Understand and be able to implement a chat-room application

In this chapter we are going to examine how PHP, JavaScript and Ajax technologies can be
 combined to enable the creation of dynamic web applications. Using this technology enables us
to create systems which interface to databases and at the same time provide more responsive
web applications.

We have already introduced JavaScript, in Chapter 6, and Ajax, in Chapter 7, and have subsequently
delved into the world of PHP and its integration with databases. We are now ready to introduce
how the three technologies can be easily integrated. The good news is that there is not a great
deal of new technology to learn; the syntax and language constructs should already be familiar to
you as we have introduced them all previously.

Support for PHP and Ajax is growing on the web and there are a growing number of articles and
resources which may be of interest to you once you have mastered the basics. We have included
links to some web sites in the further reading section of this chapter which you may find interesting.

INTRODUCTION

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 525

We begin by revisiting the JavaScript/Ajax techniques and show how a simple PHP application can
be invoked. After this we shall introduce some simple example applications in PHP to show what
effects can be created using Ajax and PHP.

Implementing Ajax

Creating combined JavaScript, Ajax and PHP applications is relatively easy. In all of the
following examples we use the same getXMLHttpRequest function to create an
XMLHttpRequest object as we did in Chapter 7, shown again below:

// getxmlhttprequest.js
function getXMLHttpRequest()
{

var xhrequest � null;
if(window.XMLHttpRequest)
{
// If IE7, Mozilla, Safari, etc: Use native object

try
{

xhrequest � new XMLHttpRequest();
return xhrequest;

}
catch(exception)
{
// OK, just carry on looking
}

}
else
{

// . . . otherwise, use the ActiveX control for IE5.x and IE6
var IEControls �

[“MSXML2.XMLHttp.5.0”,”MSXML2.XMLHttp.4.0”,”MSXML2.XMLHttp.3.0”,
”MSXML2.XMLHttp”];

for(var i�0; i�IEControls.length; i��)
{

try
{

xhrequest � new ActiveXObject(IEControls[i]);
return xhrequest;

}
catch(exception)
{
// OK, just carry on looking
}

}
// if we got here we didn’t find any matches
throw new Error(“Cannot create an XMLHttpRequest”);

}
}

18.1

526 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 526

For the sake of the readability and reuse we save this function as the JavaScript file:

getxmlhttprequest.js

We then load this function in each of our scripts with the JavaScript instruction:

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

This means that once we have created this function, we can use it again and again in each
of our examples without the need to recreate or change it in anyway. In addition to the
‘getxmlhttprequest.js’ file, each of the following examples also has a unique JavaScript file
that contains the two functions that open a connection to the PHP script on the server,
using an xhrequest.open() function, and process the response from the server. These two
functions are stored in a single JavaScript file with a name appropriate to the example
script, for instance:

example18-1.js
example18-2.js
. . .
example18-6.js

The PHP scripts which are invoked by the xhrequest.open() function are also given a file
name appropriate to the example, for instance:

example18-1.php
example18-2.php
. . .
example18-6.php

and the (X)HTML file which wraps everything together and is what the user invokes to
start the examples are named:

example18-1.htm
example18-2.htm
. . .
example18-6.htm

Therefore, each example consists of four files: two JavaScript files, a PHP server script and
an (X)HTML file. We shall begin with our simplest example to illustrate how these files
all work together.

A simple calculator

The following example implements a simple calculator. This calculator allows a user to
type numbers into a couple of form fields and then, by selecting an operator (add, subject,
multiply and divide) from a form select field, perform some basic mathematics on the
entered numbers. The following is the (X)HTML script, named ‘example18-1.htm’ which
the user invokes from the browser:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

18.2

18.2 A SIMPLE CALCULATOR 527

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 527

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Calculator Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-1.js”�

�/script�

�/head�

�body�

�!–– File: example18-1.htm ––�

�h2�Simple Calculator:�/h2�

�form action�“” method�“post”�

�p�

�input type�“text” name�“intValue1” id�“intValue1”
onchange�“startJS();” /�

�select name�“strOperator” id�“strOperator” onchange�“startJS();”�

�option value�“1”���/option�

�option value�“2”���/option�

�option value�“3”�/�/option�

�option value�“4”�*�/option�

�/select�

�input type�“text” name�“intValue2” id�“intValue2”
onchange�“startJS();”/�

�input type�“button” value�“�“ onclick�“startJS();” /�

�input type�“text” name�“intResult” id�“intResult” /�

�/p�

�/form�

�/body�

�/html�

After the initial document declaration and heading information the script begins by including
the ‘getxmlhttprequest.js’ and ‘example18-1.js’ JavaScript files which are going to be used
to form an XMLHttpRequest object and to process the user events (entering the numbers
and selecting the operation to be performed):

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-1.js”�

�/script�

Next, a form is declared which consists of five form elements. These elements are the two
input text fields where the user enters the numbers to use in the calculation, a select
 element to enable selection of a mathematical operator, an input button to force the
 calculation to be updated (by clicking on it) and an input text field where the sum of
the calculation is displayed:

�form action�“” method�“post”�

�p�

�input type�“text” name�“intValue1” id�“intValue1”
onchange�“startJS();” /�

528 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 528

�select name�“strOperator” id�“strOperator” onchange�“startJS();”�

�option value�“1”���/option�

�option value�“2”�–�/option�

�option value�“3”�/�/option�

�option value�“4”�*�/option�

�/select�

�input type�“text” name�“intValue2” id�“intValue2”
onchange�“startJS();”/�

�input type�“button” value�“�“ onclick�“startJS();” /�

�input type�“text” name�“intResult” id�“intResult” /�

�/p�

�/form�

Note that three ‘onchange’ events have been included on certain form elements which
invoke function startJS() whenever an input text field or select field is changed. An
onclick event also invokes function startJS() if the button is clicked.

Function startJS() as well as another function changePage() are defined within the
 ‘example18-1.js’ file and are as follows:

function startJS() {
xhrequest � null;
try {

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

if(xhrequest ! � null) {
// get form values

var intValue1 � document.getElementById(“intValue1”).value;
var intValue2 � document.getElementById(“intValue2”).value;
var strOperator � document.getElementById(“strOperator”).value;
var strUrl � “example18-1.php?intValue1�“ � intValue1 � “&intValue2�“ �

intValue2 � “&strOperator�“ � strOperator;

xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);

}
}

function changePage() {
if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {

var intResponse � xhrequest.responseText;
document.getElementById(“intResult”).value � intResponse;

}
}

18.2 A SIMPLE CALCULATOR 529

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 529

Function startJS() begins by determining whether the browser supports Ajax by trying to
create a getXMLHttpRequest object by invoking the getXMLHttpRequest() function in
the ‘getsmlhttprequest.js’ file. If an error is generated a message is displayed and the
 operation terminates:

xhrequest � null;
try {
xhrequest � getXMLHttpRequest();
}
catch(error) {
document.write(“Cannot run Ajax code using this browser”);
}

If all is well then the values in the two input text form field values and the operator from
the select field are obtained and stored in separate variables:

if(xhrequest !� null) {
// get form values
var intValue1 � document.getElementById(“intValue1”).value;
var intValue2 � document.getElementById(“intValue2”).value;
var strOperator � document.getElementById(“strOperator”).value;

Next, a string defining the connection to the PHP script on the server is created. This con-
sists of the name of the script and the three variables created from the data obtained from
the calculator form:

var strUrl � “example18-1.php?intValue1�“ � intValue1 �

“&intValue2�“ � intValue2 � “&strOperator�“ � strOperator;

Finally, three methods of the XMLHttpRequest object are invoked:

xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);

These methods define what function should be invoked when the PHP script has done
something, open a connection to the PHP script and send the form data to the script. In
this example, when the PHP script does something, this is handled by the JavaScript func-
tion changePage() which is also included within the ‘example18-1.js’ file:

function changePage() {
if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {

var intResponse � xhrequest.responseText;
document.getElementById(“intResult”).value � intResponse;

}
}

Function changePage() simply determines if the PHP script has finished executing and if
so stores the output from the script in variable intResponse. This value is then injected into
the form text result field, thus displaying the answer to the calculation to the user.

530 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 530

The PHP script, ‘example18-1.php’, which is invoked and does the calculation is as follows:

�?php
// File: example18-1.php
$intValue1 � $_GET[“intValue1”];
$intValue2 � $_GET[“intValue2”];
$strOperator � $_GET[“strOperator”];

switch ($strOperator){
case 1: echo $intValue1 � $intValue2;

break;
case 2: echo $intValue1 – $intValue2;

break;
case 3: echo $intValue1 / $intValue2;

break;
case 4: echo $intValue1 * $intValue2;

}
?�

The script obtains the values of the three variables passed to it via the GET method and
uses a ‘switch’ statement to output the result of the mathematical calculation using an
‘echo’ construct.

The output from the above example is illustrated in Figure 18.1.

So, to summarize, the example creates a simple web form and waits for a user to trigger an
event. When an event is triggered, an Ajax connection is formed and a PHP script is invoked.
When the PHP script finishes, the output from the script is displayed on the form.

A simple database stock example

This example illustrates a simple dynamic database stock check and demonstrates that
Ajax can be used to run PHP scripts that obtain up-to-the-minute information stored on a
database. The advantage of using Ajax for this example is that the database is queried when
the user interacts with the application thus ensuring that the information displayed is
 accurate but the user is not inconvenienced by a page reload:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

18.3

18.3 A SIMPLE DATABASE STOCK EXAMPLE 531

18

Simple calculatorFIGURE 18.1

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 531

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Stock Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-2.js”�

�/script�

�/head�

�body�

�!–– File: example18-2.htm ––�

�h2�Fruit Stock Information:�/h2�

�form action�“” method�“post”�

�p�

�label for�“strStock”�Stock Query: �/label�

�input type�“text” name�“strStock” id�“strStock”/��/p�

�p�

�input type�“button” value�“Check” onclick�“startJS();”/��/p�

�div id�“strStockResult”��/div�

�/form�

�/body�

�/html�

As in our previous example the ‘getxmlhttprequest.js’ file is loaded but this time the
JavaScript file ‘example18-2.js’ is loaded:

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-2.js”�

�/script�

The remainder of the script creates a simple form consisting of two elements: an input
text field where the user enters the database item they are searching for and a form
 submit button:

�form action�“” method�“post”�

�p�

�label for�“strStock”�Stock Query: �/label�

�input type�“text” name�“strStock” id�“strStock”/��/p�

�p�

�input type�“button” value�“Check” onclick�“startJS();”/��/p�

�div id�“strStockResult”��/div�

�/form�

Note firstly that the form includes an empty ‘div’ element with the id ‘strStockResult’. We
use it to display the output from our PHP script later. Note secondly, that the form submit
button includes an onclick event which invokes function startJS() when the button is
clicked. Functions startJS() and changePage() are defined in the ‘example18-2.js’ file:

function startJS() {
xhrequest � null;
try {

532 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 532

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

if(xhrequest !� null) {
// get form values
var strStock � document.getElementById(“strStock”).value;

var strUrl � “example18-2.php?strStock�“ � strStock;
xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);

}
}

function changePage() {
if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {

var strResponse � xhrequest.responseText;
document.getElementById(“strStockResult”).innerHTML � str Response;

}
}

As in our previous example, function startJS() checks to see if there is any problem creating
an xmlhttprequest object and, if not, obtains the data entered on the form, opens a connec-
tion to the PHP script, passes the data to the script and defines function changePage() to
process the output from the PHP script. Function changePage() obtains the data output
from the PHP script and stores this in variable strResponse. This data is then injected into
the strStockResult division defined previously using the innerHTML method.

Our PHP script which queries the database and outputs the corresponding records is
as follows:

�?php
// File: example18-2.php

$strStock � $_GET[“strStock”];

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“stock”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM stock WHERE
Name�‘$strStock’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

$intRecords � mysql_num_rows($dbRecords);

if ($intRecords �� 0)
echo “�p�Stock Item ‘$strStock’ Unknown.�/p�”;

else {
while ($arrRecords � mysql_fetch_array($dbRecords)) {

18.3 A SIMPLE DATABASE STOCK EXAMPLE 533

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 533

$strDescription � $arrRecords[“Description”];
$intQuantity � $arrRecords[“Quantity”];
echo “�p�$strDescription: Currently we have $intQuantity

of boxes.�/p�”;
}

}
?�

The script begins by retrieving the data passed to it by the getXMLHttpRequest object and
storing this in variable $strStock:

$strStock � $_GET[“strStock”];

Next it forms a connection to a database which we have created called stock:

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“stock”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

The database fields, types and the data stored within the database is illustrated in Table 18.1.

It is not really important what the data in the database actually is, nor the actual fields
within the table, so long as there is something for the script to search for and display. The
remainder of the script searches the database for any records matching the data received
by the PHP script:

$dbRecords � mysql_query(“SELECT * FROM stock WHERE
Name � ‘$strStock’ “, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

$intRecords � mysql_num_rows($dbRecords);

if ($intRecords �� 0)
echo “�p�Stock Item ‘$strStock’ Unknown.�/p�”;

else {
while ($arrRecords � mysql_fetch_array($dbRecords)) {

$strDescription � $arrRecords[“Description”];
$intQuantity � $arrRecords[“Quantity”];
echo “�p�$strDescription: Currently we have $intQuantity of boxes.�/p�”;

}

534 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

The stock databaseTABLE 18.1

Id (int) Name (varchar 100) Description (text) Quantity (int)

1 Apples English Granny Smith Apples 12
2 Apples French Golden Apples 20
3 Pears Italian Blushed Pears 23
4 Pears English Conference Pears 104
5 Apples French Pink Lady Apples 6
6 Oranges Spanish Oranges Seedless 45

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 534

The output from the above example is illustrated in Figure 18.2.

A zooming photo thumbnail application

This example illustrates a zooming photo thumbnail application. The user is presented with
a series of small thumbnails of photos. When they move the mouse over a photo then a
larger image is displayed. This application could have been written using standard
JavaScript and (X)HTML but this would have required either all the images to be
 downloaded when the page was requested initially, which would have resulted in a long
download time, or a page refresh whenever the user moved the mouse over an image. The
advantage of using Ajax is that only the images that the user wishes to zoom in on are
downloaded and a full page refresh is avoided:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Picture Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–
1” /�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-3.js”�

�/script�

�style type�“text/css”�

#big {

18.4

18.4 A ZOOMING PHOTO THUMBNAIL APPLICATION 535

18

Stock database outputFIGURE 18.2

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 535

float: left;
}

#small {
float: left;
width: 320px;

}

�/style�

�/head�

�body�

�!–– File: example18-3.htm – –�

�h2�Zooming Pictures:�/h2�

�div id � “small”�

�img src�“graphics/1s.jpg” onmouseover�“startJS(1);”
alt�“small picture”/�

�img src�“graphics/2s.jpg” onmouseover�“startJS(2);”
alt�“small picture”/�

�img src�“graphics/3s.jpg” onmouseover�“startJS(3);”
alt�“small picture”/�

�img src�“graphics/4s.jpg” onmouseover�“startJS(4);”
alt�“small picture”/�

�img src�“graphics/5s.jpg” onmouseover�“startJS(5);”
alt�“small picture”/�

�img src�“graphics/6s.jpg” onmouseover�“startJS(6);”
alt�“small picture”/�

�img src�“graphics/7s.jpg” onmouseover�“startJS(7);”
alt�“small picture”/�

�img src�“graphics/8s.jpg” onmouseover�“startJS(8);”
alt�“small picture”/�

�img src�“graphics/9s.jpg” onmouseover�“startJS(9);”
alt�“small picture”/�

�img src�“graphics/10s.jpg” onmouseover�“startJS(10);”
alt�“small picture”/�

�img src�“graphics/11s.jpg” onmouseover�“startJS(11);”
alt�“small picture”/�

�img src�“graphics/12s.jpg” onmouseover�“startJS(12);”
alt�“small picture”/�

�/div�

�div id�“big”��img src�“graphics/1l.jpg” width�‘600’
alt�“large picture”/��/div�

�/body�

�/html�

The ‘getxmlhttprequest.js’ and ‘example18-3.js’ JavaScript files are loaded:

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-3.js”�

�/script�

An embedded CSS-style definition is included to define the style of the small thumbnail

536 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 536

photos and the larger zoomed image:

�style type�“text/css”�

#big {
float: left;

}
#small {

float: left;
width: 320px;

}
�/style�

Next, each of the thumbnail images is displayed within a division with an id “small”. Each
thumbnail image has the file name 1s.jpg, 2s.jgp, ,3s.jpg . . . 11s.jpg:

�div id�“small”�

�img src�“graphics/1s.jpg” onmouseover�“startJS(1);”
alt�“small picture”/�

�img src�“graphics/2s.jpg” onmouseover�“startJS(2);”
alt�“small picture”/�

�img src�“graphics/3s.jpg” onmouseover�“startJS(3);”
alt�“small picture”/�

�img src�“graphics/4s.jpg” onmouseover�“startJS(4);”
alt�“small picture”/�

�img src�“graphics/5s.jpg” onmouseover�“startJS(5);”
alt�“small picture”/�

�img src�“graphics/6s.jpg” onmouseover�“startJS(6);”
alt�“small picture”/�

�img src�“graphics/7s.jpg” onmouseover�“startJS(7);”
alt�“small picture”/�

�img src�“graphics/8s.jpg” onmouseover�“startJS(8);”
alt�“small picture”/�

�img src�“graphics/9s.jpg” onmouseover�“startJS(9);”
alt�“small picture”/�

�img src�“graphics/10s.jpg” onmouseover�“startJS(10);”
alt�“small picture”/�

�img src�“graphics/11s.jpg” onmouseover�“startJS(11);”
alt�“small picture”/�

�img src�“graphics/12s.jpg” onmouseover�“startJS(12);”
alt�“small picture”/�

�/div�

When the mouse is moved over the image an ‘onmouseover’ event triggers a call to
the JavaScript function startJS() passing it a numerical value corresponding to the
image the mouse has moved over. A ‘div’ element with the id ‘big’ is used to display
the zoomed image. Large images have the same file name as their corresponding
small thumbnails except that the character ‘s’ is replaced with an ‘l’. Image ‘1l.jpg’ is
displayed initially:

�div id�“big”��img src�“graphics/1l.jpg” width�‘600’
alt�“large picture”/��/div�

18.4 A ZOOMING PHOTO THUMBNAIL APPLICATION 537

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 537

It doesn’t matter what images you use in this example (the ones here are available for
download from the book web site) but they must all be numbered, from 1 to 12 in this
case, with the letter ‘s’ appended to the filename. Likewise the corresponding large images
should be labelled the same but with a letter ‘l’.

Functions startJS() and changePage() are defined in file ‘example18-3.js’:

function startJS(intPicture) {
xhrequest � null;
try {

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

if(xhrequest !� null) {
// get form values
var strUrl � “example18-3.php?intPicture�“ � intPicture;
xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);

}
}

function changePage() {
if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {

var strResponse � xhrequest.responseText;
document.getElementById(“big”).innerHTML � strResponse;

}
}

Function startJS() is slightly different from our previous examples as it contains a single
parameter, intPicture. This variable contains a number representing the image the mouse
has moved over. As before the function checks to see if there is any problem creating an
xmlhttprequest object and if not opens a connection to the PHP script, passes the value of
the image in intPicture to the script and defines function changePage() to process the
 output from the PHP script.

Function changePage() obtains the data output from the PHP script and stores this in vari-
able strResponse. This data, which is a simple (X)HTML element pointing to the large
image is then injected into the ‘big’ element using the innerHTML method.

The PHP script is very simple. It obtains the value of the image the mouse has moved over,
passed via the GET method and stores it in a variable called $intPicture. It then outputs
the (X)HTML element pointing to the corresponding large image:

�?php
// File: example18-3.php

$intPicture � $_GET[“intPicture”];

echo “�img src�‘graphics/$intPicture” . “l.jpg’ width�‘600’ /�”;
?�

538 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 538

18.5 A DYNAMIC HISTOGRAM 539

18

Zoomed thumbnail imageFIGURE 18.3

The output from the above example is illustrated in Figure 18.3.

A dynamic histogram

Consider that you may wish to create a web site which displays a graph showing in almost real
time some data about your site. This data could be the number of users registered or online,
or the number of transactions or sales processed in the last minute, for example. You may also
wish to display this information as a histogram or bar-chart and by using Ajax you can
 minimize the effect that continually updating this graph will have on the users of your site.

18.5

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 539

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�Graph Script�/title�

�meta http-equiv�“Content-Type” content � “text/html; charset�ISO-8859-1”
/�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-4.js”�

�/script�

�style type�“text/css”�

#graphBars {
float: left;

}

#graphScale {
float: left;
width: 40px;
}

�/style�

�/head�

�body onload�“startJS();”�

�!–– File: example18-4.htm – –�

�h2�Graph:�/h2�

�div id�“graph”�

�/div�

�/body�

�/html�

The ‘getxmlhttprequest.js’ and ‘example18-4.js’ JavaScript files are loaded:

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-4.js”�

�/script�

An embedded CSS-style definition is included to define the style of the histogram bars and
the scale which is going to be displayed:

�style type�“text/css”�

#graphBars {
float: left;

}
#graphScale {

float: left;
width: 40px;
}

�/style�

540 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 540

When the web page is loaded, an ‘onload’ event invokes function startJS():

�body onload�“startJS();”�

Next a division is created called “graph” where the histogram will be displayed:

�h2�Graph:�/h2�

�div id�“graph”�

�/div�

Functions startJS() and changePage() are defined in file ‘example18-4.js’:

function startJS() {
xhrequest � null;
try {

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

if(xhrequest !� null) {
var objDate � new Date();
var intSecs � objDate.getTime();

var strUrl � “example18-4.php?intSecs�“ � intSecs;
xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);
setTimeout(“startJS()”, 500);
}

}

function changePage() {
if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {

var strResponse � xhrequest.responseText;
document.getElementById(“graph”).innerHTML � strResponse;

}
}

Function startJS() begins by checking to see if there is any problem creating an
xmlhttprequest object:

function startJS(intPicture) {
xhrequest � null;
try {

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

18.5 A DYNAMIC HISTOGRAM 541

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 541

A date object is created and used to return the number of seconds since 1/1/1970 by using
the getTime() method:

if(xhrequest !� null) {
var objDate � new Date();
var intSecs � objDate.getTime();

We are going to use the value obtained to solve a caching problem with some browsers.
Some browsers do not reload a web page if they think they have a perfectly good one
stored in their local cache. This presents us with a problem as we want the graph script to
automatically reload every few seconds and redisplay the graph. However, this does not
work in some browsers as they simply redisplay the old cached page thus not obtaining and
displaying any new graph bars. We can get around this problem by using the number of
 seconds value, as this is always growing and thus changing. If we append this value to the
script invocation it fools the browser into thinking that we are calling a different script and
thus not using the one stored in the cache.

If there is no problem, the script opens a connection to the PHP script passing the value
of the number of seconds obtained previously. Function changePage() is defined to process
the output produced from the PHP script.

var strUrl � “example18-4.php?intSecs�“ � intSecs;
xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);

Another difference from the startJS() functions in our previous examples is the inclusion
of a setTimeOut() function call which is defined to call the startJS() function 500
 milliseconds later:

setTimeout(“startJS()”, 500);

Function changePage() obtains the data output from the PHP script and stores this in
 variable strResponse. This data, which is the entire (X)HTML defining the histogram is
then injected into the ‘graph’ element using the innerHTML method:

function changePage() {
if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {

var strResponse � xhrequest.responseText;
document.getElementById(“graph”).innerHTML � strResponse;

}
}

The following PHP script generates the histogram graph and it is somewhat more complex
than our previous examples:

�?php
// File: example18-4.php

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“graph”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

542 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 542

srand((double) microtime() * 1000000);
$intPercentage � rand(0,99);

$dbWriteRecords � mysql_query(“INSERT INTO percentageValues VALUES
(‘’, ‘$intPercentage’)”, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM percentageValues”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

$intCount � mysql_num_rows($dbRecords);
if ($intCount � 20) {

$intStart � $intCount – 20;
$dbRecords � mysql_query(“SELECT * FROM percentageValues LIMIT

$intStart,20”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

}

$arrPercent � array (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
$intSize � count($arrPercent);
$intCount � 0;

while ($arrRecords � mysql_fetch_array($dbRecords)) {
$arrPercent[$intCount��] � $arrRecords[“Percentage”];

}
graph($arrPercent, $intSize);

function graph($arrData, $intSize) {
$intBarWidth � 10;
$intBarSpacing � 10;
$intMultiplier � 1.5;

$intSize�count($arrData);
echo “�div id�‘graphScale’��img src�‘graphics/scale.gif’

width�‘27’ height�‘150’ /��/div�”;
echo “�div id�‘graphBars’�”;
echo “�img src�‘graphics/hiddenbar.gif’ width�‘0’

height�‘ “ . 99 * $intMultiplier . “‘�”;
for($intCount�0;$intCount�$intSize;$intCount��) {

echo “�img src�‘graphics/redbar.gif’ width�‘$intBarWidth’
height�‘ “ . $arrData[$intCount] * $intMultiplier . “‘�”;

}
echo “�/div�”;

}
?�

The script begins by forming a connection to database ‘graph’:

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“graph”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

18.5 A DYNAMIC HISTOGRAM 543

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 543

The graph database has a single table called percentageValues which consists of just two
integer fields: Id and Percentage. The contents of the table are generated by the PHP
script. The next part of the script generates a random number between 0 and 99 and stores
this in the graph database:

srand((double) microtime() * 1000000);
$intPercentage � rand(0,99);

$dbWriteRecords � mysql_query(“INSERT INTO percentageValues VALUES
(‘’, ‘$intPercentage’)”, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());

Next, the contents of the database is read and the number of records in the database is
stored in $intCount:

$dbRecords � mysql_query(“SELECT * FROM percentageValues”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

$intCount � mysql_num_rows($dbRecords);

If the number of records in the database is greater than 20 then the last 20 records are read:

if ($intCount � 20) {
$intStart � $intCount – 20;
$dbRecords � mysql_query(“SELECT * FROM percentageValues LIMIT $intStart,20”,

$dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

}

An array is defined and the percentage values of the selected database records are stored
in the array:

$arrPercent � array (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
$intSize � count($arrPercent);
$intCount � 0;

while ($arrRecords � mysql_fetch_array($dbRecords)) {
$arrPercent[$intCount��] � $arrRecords[“Percentage”];

}

Finally, function graph() is invoked passing it the array contents and the size of the array:

graph($arrPercent, $intSize);

Function graph() begins by specifying the width of the histogram bars, the spacing
between them and a multiplier which affects the height of the bars:

function graph($arrData, $intSize) {
$intBarWidth � 10;
$intBarSpacing � 10;
$intMultiplier � 1.5;

544 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 544

An image representing the scale of the histogram is displayed as well as a hidden image
which fixes the maximum height of the bars:

$intSize�count($arrData);
echo “�div id�‘graphScale’��img src�‘graphics/scale.gif’

width�‘27’ height � ‘150’ /��/div�”;
echo “�div id�‘graphBars’�”;
echo “�img src�‘graphics/hiddenbar.gif’ width�‘0’

height�‘ “ . 99 * $intMultiplier . “‘�”;

For each percentage value in the array an image representing a histogram bar is displayed
in a ‘div’ element:

for($intCount�0;$intCount�$intSize;$intCount��) {
echo “�img src�‘graphics/redbar.gif’ width�‘$intBarWidth’

height�‘ “ . $arrData[$intCount] * $intMultiplier . “‘�”;
}
echo “�/div�”;

The output from the above example is illustrated in Figure 18.4.

A simple chat system

The following example illustrates a simple chat system. Users can post messages which
are then visible to anyone viewing the chat system. The chat system also displays new
messages automatically to all users as it receives them without the need to refresh
the page:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

18.6

18.6 A SIMPLE CHAT SYSTEM 545

18

Dynamic histogramFIGURE 18.4

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 545

�head�

�title�Chatroom Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset � ISO-8859-
1” /�

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-5.js”�

�/script�

�style type�“text/css”�

#chatroom {
float: left;
width: 300px;

}

#messageform {
float: left;
width: 250px;

}

�/style�

�/head�

�body onload�“startJS(1);”�

�!—– File: example18-5.htm —–�

�h2�Chatroom:�/h2�

�div id�“chatroom”�

�/div�

�div id�“messageform”�

�form action�“” method�“post”�

�p�UserId: �input type�“text” name�“strUserId” id�“strUserId” /��/p�

�p�Message: �input type�“text” name�“strMessage” id�“strMessage” /��/p�

�p��input type�“button” value�“Send Message” onclick�“startJS(2);” /��/p�

�/form�

�/div�

�/body�

�/html�

Firstly, the ‘getxmlhttprequest.js’ and ‘example18-5.js’ JavaScript files are loaded:

�script type�“text/javascript” src�“getxmlhttprequest.js”�

�/script�

�script type�“text/javascript” src�“example18-5.js”�

�/script�

An embedded CSS-style definition is included to define the styles of the message form,
where the user enters new messages, and the chatroom, where the messages are displayed:

�style type�“text/css”�

#chatroom {

546 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 546

float: left;
width: 300px;

}

#messageform {
float: left;
width: 250px;

}

�/style�

When the page first loads, function startJS() is invoked passing it the parameter 1,
 indicating the user has joined the chat system:

�body onload�“startJS(1);”�

A ‘div’ element defines the extent of the chatroom. This is used to display the chat
 messages:

�div id�“chatroom”�

�/div�

Another ‘div’ element defines the message form, which consists of two text fields for the
chat user to enter their id and the message to display:

�div id�“messageform”�

�form action�“” method�“post”�

�p�UserId: �input type�“text” name�“strUserId” id�“strUserId” /��/p�

�p�Message: �input type�“text” name�“strMessage” id�“strMessage” /��/p�

�p��input type�“button” value�“Send Message” onclick�“startJS(2);” /��/p�

�/form�

�/div�

When the form button is clicked the onclick event invokes the startJS() function passing
it the parameter 2, indicating a new message. Functions startJS() and changePage() are
defined in file ‘example18-5.js’:

function startJS(intFlag) {
xhrequest � null;
try {

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

if(xhrequest !�null) {
// get form values
var strUserId � document.getElementById(“strUserId”).value;
var strMessage � document.getElementById(“strMessage”).value;

var objDate � new Date();
var intSecs � objDate.getTime();

if (intFlag � � 2)

18.6 A SIMPLE CHAT SYSTEM 547

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 547

strUrl � “example18-5.php?strUserId�“ � strUserId �

“&strMessage�“ � strMessage;
else {

strUrl � “example18-5.php?intSecs � “ � intSecs;
xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);
setTimeout(“startJS()”, 500);

}
}
function changePage() {

if (xhrequest.readyState �� 4 && xhrequest.status �� 200) {
var strResponse � xhrequest.responseText;

document.getElementById(“chatroom”).innerHTML � strResponse;
}

}

Function startJS() contains a single parameter, intFlag, which denotes whether a user has
just launched a chat application or whether a message has been entered:

function startJS(intFlag) {
xhrequest � null;
try {

xhrequest � getXMLHttpRequest();
}
catch(error) {

document.write(“Cannot run Ajax code using this browser”);
}

As before the function checks to see if there is any problem creating an xmlhttprequest
object and, if not, obtains the user id and message from the form:

if(xhrequest !� null) {
// get form values
var strUserId � document.getElementById(“strUserId”).value;
var strMessage � document.getElementById(“strMessage”).value;

A date object is created and used to return the number of seconds since 1/1/1970 by using
the getTime() method:

var objDate � new Date();
var intSecs � objDate.getTime();

We are going to use the value obtained to solve a caching problem with some browsers as
in Section 18.5. Next, if the value of intFlag is equal to 2 then the data stored in the
strUserId and strMessage variables are added to the PHP invocation, otherwise they are
not and the value of intSecs is appended instead.

if (intFlag �� 2)
strUrl � “example18-5.php?strUserId�“ � strUserId �

“&strMessage � “ � strMessage;
else

strUrl � “example18-5.php?intSecs�“ � intSecs;

548 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 548

Finally, a connection to the PHP script is opened and invoked. Function changePage() is
defined to process the output from the PHP script. A setTimeout() function is defined to
invoke the startJS() function in 500 milliseconds from now in order to check if any
 further messages have been posted by other users of the system:

xhrequest.onreadystatechange � changePage;
xhrequest.open(“GET”, strUrl, true);
xhrequest.send(null);
setTimeout(“startJS()”, 500);

The following PHP script processes the chatroom messages:

�?php
// File: example18-5.php

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“chatroom”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

if (isset($_GET[“strUserId”])) {
$strUserId � $_GET[“strUserId”];
$strMessage � $_GET[“strMessage”];

}
else {

$strUserId � “”;
$strMessage � “”;

}
if (strlen($strMessage) � 0 && strlen($strUserId) � 0) {

$dbWriteRecords � mysql_query(“INSERT INTO messages VALUES (‘’,
‘$strUserId’, ‘$strMessage’)”, $dbLocalhost)

or die(“Problem reading table: “ . mysql_error());
}

$dbRecords � mysql_query(“SELECT * FROM messages”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�[“ . $arrRecords[“UserId”] . “]: “;
echo $arrRecords[“Message”] . “�/p�”;

}
?�

The PHP script begins by forming a connection to the ‘chatroom’ database:

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“chatroom”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

18.6 A SIMPLE CHAT SYSTEM 549

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 549

The chatroom database has a single table called chatroom consisting of just three fields:
Id (int), UserId (varchar(50)) and Message (text). The contents of the database table are
generated by the PHP script so we don’t need to populate the database with any data.

Next, the values of the UserId and Message are checked to see if they exist and if so are
stored in appropriately named variables:

if (isset($_GET[“strUserId”])) {
$strUserId � $_GET[“strUserId”];
$strMessage � $_GET[“strMessage”];

}
else {

$strUserId � “”;
$strMessage � “”;

}

If the message and user Id fields are not blank then they are written to the database table:

if (strlen($strMessage) � 0 && strlen($strUserId) � 0) {
$dbWriteRecords � mysql_query(“INSERT INTO messages VALUES (‘’,

‘$strUserId’, ‘$strMessage’)”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

}

Finally, all messages are read from the database and output to the user’s web page:

$dbRecords � mysql_query(“SELECT * FROM messages”, $dbLocalhost)
or die(“Problem reading table: “ . mysql_error());

while ($arrRecords � mysql_fetch_array($dbRecords)) {
echo “�p�[“ . $arrRecords[“UserId”] . “]: “;
echo $arrRecords[“Message”] . “�/p�”;

}

The output from the above example is illustrated in Figure 18.5.

550 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 550

18.6 A SIMPLE CHAT SYSTEM 551

18

Dual chat windowFIGURE 18.5

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 551

552 CHAPTER 18 COMBINING AJAX AND PHP – MAKING THE WEB MORE DYNAMIC

18

Exercises

18.1 Amend the simple calculator (example 18.1) so that it checks to see if there are
numeric values in both fields and if not outputs the value ‘error’ in the result field.

18.2 Amend the dynamic histogram (example 18.4) so that a user is able to select the
colour that the graph is displayed in, from red, blue, yellow and green. You should
use a select field to provide these options to the user.

18.3 Create a dynamic expanding menu system. The menu should consist of a series of
buttons with a ‘�’ character displayed on them and some associated menu text, as
shown in the screen shot below:

Clicking on any of the ‘�’ buttons invokes an Ajax script which injects some menu
data into that part of the menu. It should also change the ‘�’ menu button into a ‘�’
button as shown in the screen shot below:

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 552

18

Clicking on the ‘�’ button removes the injected menu text returning that part of the
menu to its previous state (with the ‘�’ button also displayed instead of the ‘�’ one).

18.4 Create a script which displays an image and allows the user to enlarge or reduce it by
clicking one of two form buttons.

REFERENCES AND FURTHER READING 553

References and further reading

Babin, L. (2006) Beginning Ajax with PHP: From novice to professional. http://www. phpbuilder.
com/columns/beginning_ajax20070104.php3

Hadlock, K. (2006) Database Enabled Ajax with PHP. http://www.webreference.com/programming/
javascript/kh/

Walter, A. (2006) Using Ajax and PHP to build your mailing list. http://www.sitepoint.com/arti-
cle/ use-ajax-php-build-mailing-list

In this chapter we began by reviewing the JavaScript syntax for implementing Ajax
 applications. Next, we introduced our first PHP, Ajax enabled application a simple
 calculator and explained how the technologies were integrated together. We then intro-
duced other examples which illustrated a simple database information retrieval, a
 zooming thumbnail application, a dynamic histogram and a simple chat system.

SUMMARY

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 553

Stobart-18.qxp:Stobart-18 11/6/07 10:03 PM Page 554

CHAPTER 19

Conformance to Standards and
Accessibility

LEARNING OBJECTIVES

● Be aware of various web standards, their use and understand why writing
web applications which conform to the standards is important

● Know where to go to obtain further information about the various web
standards which are available

● Be aware of and be able to use various on-line conformance tools which
help determine if your scripts meet the specific standard

● Understand the problems and pitfalls of using on-line standard
 conformance tools

● Understand the concept of web accessibility and why it is important to
 create web systems which are accessible

● Be aware of the different levels of accessibility which web systems can
strive to address

● Be aware of and be able to use on-line tools to assist in validation that a
web system meets basic accessibility guidelines

In this chapter, we explore some of the different web standards which are available today and
explain why it is important that you ensure that the web systems you create conform to one or
more of these standards depending on what technologies you are using and what it is that you
wish to achieve. We introduce the standards for the creation of (X)HTML documents and cascad-
ing style sheets (CSS). We examine how various on-line tools can be used to assist you in ensuring
that your applications conform to your chosen standard. We then explore the concept of
 accessibility and explain why accessibility standards and guidelines are important in designing and

INTRODUCTION

555

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 555

building applications for the web. We examine various levels of accessibility and consider those
tools which are available to help improve web system accessibility for as many individuals
as possible.

Software standards and web standardisation

According to the Wikipedia (http://en.wikipedia.org), ‘Software standards enable software
to interoperate. Many things are (somewhat) arbitrary, so the important thing is that every-
one agrees on what they are.’ This is especially true for software engineers engaged with
developing applications using web technology as it is a fast-changing and developing arena,
with an ever-increasing number of applications interacting with one another, exchanging
information and using different protocols and technologies. It is therefore vitally important
if this is all going to work smoothly then the various applications should all ensure that they
conform to the standards which have been agreed.

Standards are often owned and developed by private organisations, such as the standards
Microsoft has created for how to design and create software which runs on its Windows
operating systems. Other standards are developed by non-profit-making, public organisa-
tions. The main organisation responsible for developing and refining web standards is the
World Wide Web Consortium (W3C), which in their own words ‘ . . . develops interoper-
able technologies (specifications, guidelines, software, and tools) to lead the Web to its full
potential.’ The W3C (http://www.w3.org) operates as a consortium of member
 organisations which in addition to developing various web standards, are actively involved
with research, education and software development projects. Working alongside the W3C
is the Internet Engineering Task Force (IETF) which is part of the Internet Society
(http://www.isoc.org) which helps promote and develop the adoption of various web
 standards.

In this chapter, we examine the W3C’s work on standards for (Extensible) HyperText
Markup Language: (X)HTML, JavaScript and cascading style sheets (CSS). In addition, we
examine the work on web accessibility content guidelines.

HTML and XHTML

The HyperText Markup Language (HTML) can trace its routes back to 1993 where it was
originally published not as a full standard but as an IETF working draft. Over the years,
HTML had been refined and developed leading to its final incarnation, version 4.01,
 published as a full standard in 1999, to which the last changes were made in 2001. The
HTML 4.01 specification is available at the W3C web site, as shown in Figure 19.1.

Since the end of the development of the HTML 4.01 standard, the W3C has continued
work on a successor to HTML, the eXtensible HTML language (XHTML). XHTML has
been developed using the eXtensible Markup Language (XML) providing a standard which
is not only less ambiguous than those developed previously but is also easier to extend and
develop to cater for the next generation of web technologies. The latest version of the
XHTML standard is version 1.1 (although version 2.0 is being developed as a draft) and
the full standard is available at the W3C site, as shown in Figure 19.2.

19.2

19.1

556 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 556

It is interesting to note that while XHTML may appear to be a newer and ‘better’ version
of HTML than HTML 4.01, the W3C does not recommend that HTML 4.01 be deprecated
with XHTML 1.1 and that both are currently W3C standards recommendations.

19.2 HTML AND XHTML 557

19

HTML 4.01 Specification (http://www.w3.org/TR/html4/)FIGURE 19.1

XHTML 1.1 Specification (http://www.w3.org/TR/xhtml11/)FIGURE 19.2

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 557

558 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Strictly non-conforming documents

Due to the protracted development timescale, various standards and competing commer-
cial interests, it is very easy to create an HTML document which will (in most web
browsers) display the words ‘Hello world!’ and here it is:

Hello world!

Saving the above as a text file with the extension .htm and then viewing it using a web
browser such as Firefox or Internet Explorer will result in the words being correctly
 displayed. However, while this works, the document doesn’t conform to any HTML
 standard; it isn’t actually HTML at all; it just works because the browser developers have
provided a great deal of flexibility in the browsers’ ability to process and render HTML
documents. Great we hear you say, this is simple and if this works then I don’t really need
to know anything else. Well, just a minute, not so fast. Because the document has not been
written correctly to the standard, the browser has to make a number of guesses when
deciding how to display the document. In this case, because there is very little to display,
it probably gets it correct but with larger, more sophisticated documents, the chances are
that different browsers from different browser developers will guess slightly differently
and the corresponding web document will look slightly different in one browser compared
to another. This has been one of the main problems of web development for many years
and still is to a large extent.

The primary reason for this is because historically we have been allowed to be very ambigu-
ous about what we specify about our web documents. The standards are there to try and
address this issue and ensure that the web applications that we create are of the highest
quality possible and that the interoperability of web applications is increased.

A good web developer never lets the browser ‘guess’ how to display
something.NOTE

Strictly conforming HTML documents

The problem is that writing web documents which conform to standards is more difficult.
Let us consider what we need to do to create a valid HTML 4.01 ‘Hello world!’ document.
To create a valid HTML document we need to:

1 Include a line specifying the document version information. The correct format for
this for HTML 4.01 is:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

2 Include a header section, delimited by the �HEAD� element.

3 Within the header section, include a title, delimited by the �TITLE� element, for
example:

�TITLE�HTML 4.01 Document�/TITLE�

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 558

4 Within the header section, include a �META� element specifying what character set
the document is using. An example of this is:

�META HTTP-EQUIV�“Content-Type” CONTENT�“text/html; charset�ISO-8859–1”�

5 Include a body section which contains the document’s content, delimited by the
�BODY� element.

6 The body section needs to include a valid element, for example:

�P�Hello world!

7 The header and body sections should be delimited by the �HTML� element.

8 HTML elements should be written in upper case.

Combining all of the above, our correctly conforming HTML 4.01 document is now as follows:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”.

�HTML�

�HEAD�

�TITLE�HTML 4.01 Document�/TITLE�

�META HTTP-EQUIV�“Content-Type” CONTENT�“text/html;
charset�ISO-8859–1”�

�/HEAD�

�BODY�

�P�Hello world!
�/BODY�

�/HTML�

It does seem a lot of effort for what appears to be little or no gain. However, this is a ‘worse
case’ example as the same additional elements need to be added whether your document
is a single line (as in this example) or 1000 lines.

Strictly conforming XHTML documents

Things are different again when writing to the XHTML standard, as we have been
throughout this book. To create our ‘Hello world!’ document to conform to the XHTML 1.1
 standard, we need to consider things a little differently:

1 The first line of the document must specify the document version information. The
correct format for this for XHTML 1.1 is:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

2 The next line of the document must be an �html� element and must designate the
xhtml namespace (a means of qualifying names used in the document). A correct
example of this is:

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

19.2 HTML AND XHTML 559

19

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 559

3 The �html� element must include a header section, delimited by the �head� element.

4 The header section must include a title, delimited by the �title� element, for example:

�title�XHTML 1.1 Document�/title�

5 The header section must include a �meta� element specifying what character set
the document is using. An example of this is:

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859-1” /�

6 The �html� element must include a body section which contains the document’s
content, delimited by the �body� element.

7 The body section must include a valid element, for example:

�p�Hello world!�/p�

8 XHTML elements should be written in lower case.

9 Note that those elements, such as �p�, which could be used in HTML 4.01 and
before without an end tag are required to have a closing tag: �/p�.

10 Note that those elements, such as �meta�, which had no closing tag in HTML 4.01
and before now must ensure that the start tag ends with /�.

Combining all of the above, our correctly conforming XHTML 1.1 document is now as
 follows:

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�XHTML 1.1 Document�/title�

�meta http-equiv�“Content-Type” content�“text/html;
charset�ISO-8859–1” /�

�/head�

�body�

�p�Hello world!�/p�

�/body�

�/html�

Once again there is a lot of work here and you could easily forget or mistype something
even though you wanted to ensure that you had produced a document which conforms
exactly to the standard. Luckily there are tools available to help and one of the better ones
is provided by the W3C itself.

The W3C Markup Validation Service

The W3C HTML and XHTML Markup Validation service is an online tool which allows
you to check HTML and XHTML documents for conformance against W3C standards.
It is illustrated in Figure 19.3.

19.3

560 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 560

The free service allows you to specify the document that you wish to validate in one of
three different ways, as illustrated in Figure 19.3.

The first method of validation is by simply entering the URL of the document you wish to
validate, for example:

www.sunderland.ac.uk

Documents that you wish to validate by URL have to be available on-line to web users and
you are not able to validate documents stored on a ‘localhost’ intranet in this way.
However, it does allow you to validate any page currently on the web to determine if it
conforms to a W3C standard.

The second method of validation is via file upload. In this case, you provide the location of
a local file on your computer which you wish to validate. A browser form file and upload
interface is provided to allow you to search for and locate the file you wish to upload and

19.3 THE W3C MARKUP VALIDATION SERVICE 561

19

W3C Markup Validation Service (http://validator.w3.org)FIGURE 19.3

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 561

submit for validation, for example:

c:\wamp\www\chapter19\example19-1.htm

This method of validation is very useful for a developer who is creating web documents on
a local computer and wishes to validate them before placing them on a publicly viewable
web space. The problem is that uploading documents for validation in this way does not
allow you to check scripts which use PHP to generate XHTML/HTML output as these
scripts would need to be parsed through a PHP interpreter for the output to be generated.
Such scripts would need to be uploaded to a web space and then validated by supplying the
URL of the web document.

The final method of validation is by directly entering the file markup that you wish to
validate into a form textbox. This may be useful if you have a small amount of script to
validate, although it would be just as easy to upload a local document.

562 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

The speed with which the on-line tool processes your script varies
depending on how busy the service is.NOTE

Whichever way you choose to submit your document for validation the results can be one
of only two outputs: either the document is valid or it is not. Let us begin by validating our
simplest document:

Hello world!

If we validate this by typing it into the textarea box and clicking the Check button, the
result is as illustrated in Figure 19.4.

We return to the initial validation screen and try validating the HTML 4.01 document we
introduced earlier:

�!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”�

�HTML�

�HEAD�

�TITLE�HTML 4.01 Document�/TITLE�

�META HTTP-EQUIV�“Content-Type” CONTENT�“text/html; charset�ISO-8859-1”�

�/HEAD�

�BODY�

�P�Hello world!
�/BODY�

�/HTML�

If we save this file and submit it via the file upload option, then the corresponding output
is as illustrated in Figure 19.5.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 562

This page is valid and the service provides you with a graphic which you can include
on your web page to show others that you have taken care to create an interoper -
able web page. The code required to include the graphic in the web page is also
 provided:

�p�

�a href�“http://validator.w3.org/check?uri�referer”��img
src�“http://www.w3.org/Icons/valid-html401”
alt�“Valid HTML 4.01 Strict” height�“31” width�“88”��/a�

�/p�

Different graphical icons are provided depending on the standard to which you have
decided to write your web page and some of these are illustrated in Figure 19.6.

19.3 THE W3C MARKUP VALIDATION SERVICE 563

19

W3C Markup Validation Service – invalid documentFIGURE 19.4

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 563

CSS validation

In addition to providing a tool which allows the user to freely check their (X)HTML
documents for conformance to standards the W3C also provide a validation service which
allows you to validate cascading style sheets (CSS) and (X)HTML documents with
 embedded style sheets, this is illustrated in Figure 19.7.

As with the (X)HTML validation service, the tool allows three forms of validation input:
by URL, by file upload and by direct input. The following is a small CSS file which we can

19.4

564 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

W3C Markup Validation Service – valid documentFIGURE 19.5

All the examples in this book have been written so that they conform
to the XHTML 1.1 Strict standard although, to save space, many of
the PHP scripts have been included without the XHTML document
information.

NOTE

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 564

19.4 CSS VALIDATION 565

19

W3C Markup Validation Service – icons for standards conformanceFIGURE 19.6

W3C CSS Validation Service (http://jigsaw.w3.org/css-validator)FIGURE 19.7

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 565

566 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

W3C CSS Validation errorsFIGURE 19.8

use to illustrate the use of this tool:

body {
background-color: white;
color: black;
font-family: arial;
font-size: 80%;

}

div.page {
background-colour: white;

}

div.formField {
float: left;
background-color: white;
width: 12cm;
padding-top: 0.5cm;

}

If we save the above CSS file as ‘style.css’ and then use the file upload option of the tool to
locate and upload the CSS file for validation, the output produced is illustrated in Figure 19.8.

Unfortunately, the tool has found one error. Luckily it can easily be fixed:

background-colour: white;

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 566

What do you get from conformance
and validation?

Validation tools simply check for inaccuracies in the work you have produced. If the scripts
you have written conform to the standards exactly then using a validation tool is not
necessary. The point however is that human beings find writing scripts which conform to
a set of complex rules difficult and often make simple errors which can be detected by
validation tools.

Validating your (X)HTML and CSS files to ensure that the scripts you have created conform
to the published standards simply confirms that your scripts are standards-compliant.
Validation in this way doesn’t mean that your scripts are correct, as validation tools are only
currently able to check for typos and the incorrect application of script syntax rules.
Validation doesn’t teach you how to write good scripts, it simply checks that what you
have written meets the rules. You can of course create a script which doesn’t do what
you really intended, but conforms precisely to the published rules, but what use is this?

Validation and conformance does have the benefit that you have a degree of certainty that
your script has the best chance to work as intended with as many different types of web
browsers and in as many different environments as possible both now and in the future.
Creating scripts which do not conform to standards now but work as expected will provide
you with considerably less certainty that in the future the script will continue to work as
many browsers evolve to conform more closely to the published standards.

Web accessibility

In addition to ensuring that your web documents conform to the published standards, it is
also extremely important to ensure that they are as accessible as possible to people with
disabilities.

The term disability is sometimes misunderstood as meaning simply physical or mental
 disabilities in the traditional sense of the word. In the context of designing web documents,
the meaning is broader than this. Web developers need to consider the different individuals
who are accessing their web systems, the location from where they are accessing them and
the technology they are using. With this in mind disabilities which can be considered are
an individual’s:

● Inability to differentiate easily between different color combinations.
● Difficulty in reading or understanding the text displayed.
● Difficulty in processing visually certain types of information such as images or in

comprehending sounds.

19.5

19.6

19.6 WEB ACCESSIBILITY 567

19

Don’t get tripped up by the differences in American and British spellings!NOTE

The property on line 9 needs to be spelt with the American spelling of ‘color’:

background-color: white;

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 567

Web content accessibility guidelines

The W3C web content accessibility guidelines (http://www.w3.org/TR/1999/WAI-WEB-
CONTENT-19990505/#Guidelines) provide some essential reading and advice to the
developer creating on-line web systems. The guidelines provide a number of key points to
successful accessible design, summarized as:

● Separate the structure of your system from its design presentation.
● Always provide text as this is one of the most versatile items of data, which can be

converted into many different forms, such as speech or Braille.
● Create systems which are understandable by users who cannot see or hear.
● Don’t create systems which rely on one specific type of hardware. With today’s

 technology, users are accessing web systems from portable wireless devices with
smaller than standard screens and perhaps without a mouse to interact with.

● Ensure navigation between pages is simple and understandable. The use of frames,
menus and image maps may allow for a slick user design but may not make for an
easy-to-use and navigate system.

● Ensure that the content and language is clear and understandable.

Priorities and conformance

The W3C guidelines are arranged into 14 guidelines which help to address the accessibility
issues raised previously. Each guideline has a number of checkpoints for the web system
designer to consider. The checkpoints are graded against a three-level priority scale
 indicating the importance of the checkpoint’s impact on accessibility, as listed in Table 19.1.

If a web document satisfies all priority 1 checkpoints then it is said to be at accessibility
‘Conformance Level A’. If it satisfies all of priority 1 and priority 2 checkpoints then it is said
to be at accessibility ‘Conformance Level Double-A’. Finally, ‘Conformance Level Triple-A’ is
said to be met when all priority level 1, 2 and 3 checkpoints are met. In a similar way to the
way in which the W3C validation tool illustrated conformance to standards by providing a
small image which could be included on a web site the same is true for conformance to the
accessibility guidelines. The three images which can be included are illustrated in Figure 19.9.

568 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

The guidelines are quite detailed and complex. Don’t give up on them
because they look too much to read and digest.NOTE

● Inability to speak or understand the language the document is written.
● Location: a noisy work environment may affect their ability to interact with and

understand the information presented to them, acting as a distraction.
● Technology which may not be the most up to date and thus not include the latest

tools and technologies, including low resolution screens and limited graphical ability.
● Inability to communicate using keyboard or mouse.

In an attempt to remove as many of these problems the W3C has produced guidelines for
developers to help them create accessible web systems.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 568

19.6 WEB ACCESSIBILITY 569

19

Priorities (taken from http://www.w3.org/TR/1999/
WAI-WEBCONTENT-19990505/#Guidelines)

TABLE 19.1

Priority Description

1 A web content developer must satisfy this checkpoint. Otherwise, one
or more groups will find it impossible to access information in the
document. Satisfying this checkpoint is a basic requirement for some
groups to be able to use web documents.

2 A web content developer should satisfy this checkpoint. Otherwise,
one or more groups will find it difficult to access information in the
document. Satisfying this checkpoint will remove significant barriers
to accessing web documents.

3 A web content developer may address this checkpoint. Otherwise,
one or more groups will find it somewhat difficult to access
information in the document. Satisfying this checkpoint will improve
access to web documents.

W3C accessibility images (http://www.w3.org/WAI/WCAG1-
Conformance.html)

FIGURE 19.9

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 569

The W3C provides the (X)HTML script (http://www.w3.org/WAI/WCAG1-Conformance.
html) to allow the images to be included on your web page:

Level A conformance script:

�a href�“http://www.w3.org/WAI/WCAG1A-Conformance”
title�“Explanation of Level A Conformance”�

�img height�“32” width�“88”
src�http://www.w3.org/WAI/wcag1A
alt�“Level A conformance icon,
W3C-WAI Web Content Accessibility Guidelines 1.0”��/a�

Level Double-A conformance script:

�a href�“http://www.w3.org/WAI/WCAG1AA-Conformance”
title�“Explanation of Level Double-A Conformance”�

�img height�“32” width�“88”
src�“http://www.w3.org/WAI/wcag1AA”
alt�“Level Double-A conformance icon,
W3C-WAI Web Content Accessibility Guidelines 1.0”��/a�

Level Triple-A conformance script:

�a href�“http://www.w3.org/WAI/WCAG1AAA-Conformance”
title�“Explanation of Level Triple-A Conformance”�

�img height�“32” width�“88”
src�“http://www.w3.org/WAI/wcag1AAA”
alt�“Level Triple-A conformance icon,
W3C-WAI Web Content Accessibility Guidelines 1.0”��/a�

570 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Try to get your web pages to conform to Level A accessibility first.
Trying to implement a Triple-A compliant web site initially can be a
very daunting task.

NOTE

Web accessibility guidelines and checkpoints

The following guidelines and checkpoints have been taken from the W3C accessibility
guidelines web site: http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
#Guidelines. Each guideline is presented and discussed, with a table listing the checkpoints
associated with the guideline.

Guideline 1. Provide equivalent alternatives to auditory
and visual content

While some individuals cannot see text and images and others cannot hear sounds, they can
employ technologies which provide an equivalent view of this information. Such technologies

19.7

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 570

include automatic text to speech translation and text to Braille reader conversion. Table 19.2
illustrates the associated checkpoints for this guideline and their priority ratings.

Guideline 2. Don’t rely on color alone

If colored text or graphics are used to convey meaning you should ensure that the same
meaning can be determined if the information is viewed without color. This ensures that
the application is useable when viewed with a monochrome monitor. Furthermore, colors
which are too similar in hue may prove difficult for individuals who suffer from color
defects such as color blindness. Table 19.3 illustrates the associated checkpoints for this
guideline and their priority ratings.

Guideline 3. Use markup and style sheets properly

As mentioned previously in this chapter, when creating applications and information for
the web, you should ensure that your scripts and XHTML conform to the standards. This

19.7 WEB ACCESSIBILITY GUIDELINES AND CHECKPOINTS 571

19

Guideline 1 checkpointsTABLE 19.2

Checkpoint Description Priority

1.1 Provide a text equivalent for every non-text element. 1
1.2 Provide redundant text links for each active region 1

of a server-side image map.
1.3 Until user agents can automatically read aloud the 1

text equivalent of a visual track, provide an auditory
description of the important information of the
visual track of a multimedia presentation.

1.4 For any time-based multimedia presentation (e.g., a 1
movie or animation), synchronize equivalent
alternatives (e.g., captions or auditory descriptions
of the visual track) with the presentation.

1.5 Until user agents render text equivalents for client- 3
side image-map links, provide redundant text links
for each active region of a client-side image map.

Guideline 2 checkpointsTABLE 19.3

Checkpoint Description Priority

2.1 Ensure that all information conveyed with color is 1
also available without color, for example from
context or markup.

2.2 Ensure that foreground and background color 2 for images
combinations provide sufficient contrast when 3 for text
viewed by someone having color deficits or
when viewed on a black and white screen.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 571

will help ensure that your applications are accessible to the widest possible audience across
all platforms. Exploiting ‘glitches’ in the language to achieve special effects will inevitably
cause problems in the future as these problems are resolved and removed from the
next generation of web browsers. Table 19.4 illustrates the associated checkpoints for this
guideline and their priority ratings.

Guideline 4. Clarify natural language usage

You should ensure that, as part of the document header information, you identify the main
language used within the web page. You should also indicate when this language changes
within a web page thus enabling automatic text-to-speech tools, for example, to automat-
ically switch to the new language seamlessly. Furthermore, all acronyms and abbreviations
should be provided in full at least once. Table 19.5 illustrates the associated checkpoints
for this guideline and their priority ratings.

Guideline 5. Create tables that transform gracefully

The table element is designed to provide a neat tabular method for displaying data. It is
not meant to enable web developers to layout the design of a web page. Doing so makes it

572 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Guideline 3 checkpointsTABLE 19.4

Checkpoint Description Priority

3.1 When an appropriate markup language exists, use 2
markup rather than images to convey information.

3.2 Create documents that validate to published formal 2
grammars.

3.3 Use style sheets to control layout and presentation. 2
3.4 Use relative rather than absolute units in markup 2

language attribute values and style sheet property
values.

3.5 Use header elements to convey the document 2
structure and use them according to specification.

3.6 Mark up lists and list items properly. 2
3.7 Mark up quotations. Do not use quotation markup 2

for formatting effects such as indentation.

Guideline 4 checkpointsTABLE 19.5

Checkpoint Description Priority

4.1 Clearly identify changes in the natural language of a 1
document’s text and any text equivalents
(e.g., captions).

4.2 Specify the expansion of each abbreviation or 3
acronym in a document where it first occurs.

4.3 Identify the primary natural language of a 3
document.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 572

difficult for specialist screen readers to translate these pages into different formats (such
as Braille). Table 19.6 illustrates the associated checkpoints for this guideline and their
priority ratings.

Guideline 6. Ensure that pages featuring new technologies
transform gracefully

While at the same time ensuring that your applications employ the latest technology, where
appropriate it is also important that your applications and scripts work with older browsers
as not everyone will want or is able to update their technology and keep pace with the
 latest developments. Table 19.7 illustrates the associated checkpoints for this guideline and
their priority ratings.

19.7 WEB ACCESSIBILITY GUIDELINES AND CHECKPOINTS 573

19

Guideline 5 checkpointsTABLE 19.6

Checkpoint Description Priority

5.1 For data tables, identify row and column headers. 1
5.2 For data tables that have two or more logical levels 1

of row or column headers, use markup to associate
data cells and header cells.

5.3 Do not use tables for layout unless the table makes 2
sense when linearized. Otherwise, if the table does
not make sense, provide an alternative equivalent
(which may be a linearized version).

5.4 If a table is used for layout, do not use any structural 2
markup for the purpose of visual formatting.

5.5 Provide summaries for tables. 3
5.6 Provide abbreviations for header labels. 3

Guideline 6 checkpointsTABLE 19.7

Checkpoint Description Priority

6.1 Organize documents so they may be read without 1
style sheets. For example, when an HTML document
is rendered without associated style sheets, it must
still be possible to read the document.

6.2 Ensure that equivalents for dynamic content are 1
updated when the dynamic content changes.

6.3 Ensure that pages are usable when scripts, applets, 1
or other programmatic objects are turned off or not
supported. If this is not possible, provide equivalent
information on an alternative accessible page.

6.4 For scripts and applets, ensure that event handlers 2
are input device-independent.

6.5 Ensure that dynamic content is accessible or provide 2
an alternative presentation or page.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 573

Guideline 7. Ensure user control of time-sensitive
content changes

The use of blinking, animated and scrolling feature on web pages can cause difficulties for
certain individuals. Ensure that these features can be paused and that, when paused, the
information they contain is clearly visible. Table 19.8 illustrates the associated checkpoints
for this guideline and their priority ratings.

Guideline 8. Ensure direct accessibility of embedded
user interfaces

Sometimes ‘objects’ are embedded into a web page. Examples of these include video
 players, flash animations and Java applets. If using such objects you should ensure that the
interfaces that they use are also accessible to users. Table 19.9 illustrates the associated
checkpoints for this guideline and their priority ratings.

Guideline 9. Design for device-independence

Device-independence refers to the ability of web applications to work successfully with a
variety of different input devices, such as mouse, keyboard, tracker-ball, tablet. Requiring
the specific use of a device, such as a mouse, will restrict the accessibility of the

574 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Guideline 7 checkpointsTABLE 19.8

Checkpoint Description Priority

7.1 Until user agents allow users to control flickering, 1
avoid causing the screen to flicker.

7.2 Until user agents allow users to control blinking, 2
avoid causing content to blink (i.e., change
presentation at a regular rate, such as turning
on and off).

7.3 Until user agents allow users to freeze moving 2
content, avoid movement in pages.

7.4 Until user agents provide the ability to stop the refresh, 2
do not create periodically auto-refreshing pages.

7.5 Until user agents provide the ability to stop auto-redirect, 2
do not use markup to redirect pages automatically.
Instead, configure the server to perform redirects.

Guideline 8 checkpointsTABLE 19.9

Checkpoint Description Priority

8.1 Make programmatic elements such as scripts and applets 1
directly accessible or compatible with assistive technologies.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 574

19.7 WEB ACCESSIBILITY GUIDELINES AND CHECKPOINTS 575

19

 application to certain individuals who may require to use a non-pointing device for
 example. Table 19.10 illustrates the associated checkpoints for this guideline and their
 priority ratings.

Guideline 10. Use interim solutions

Pop-up windows can be rather disorienting for a user and while newer browsers permit such
events they should be avoided. Table 19.11 illustrates the associated checkpoints for this
guideline and their priority ratings. It should be noted that it is expected that these check-
points will not be required in the future as web technologies will automatically address them.

Guideline 9 checkpointsTABLE 19.10

Checkpoint Description Priority

9.1 Provide client-side image maps instead of server-side 1
image maps except where the regions cannot be
defined with an available geometric shape.

9.2 Ensure that any element that has its own interface 2
can be operated in a device-independent manner.

9.3 For scripts, specify logical event handlers rather 2
than device-dependent event handlers.

9.4 Create a logical tab order through links, form 3
controls, and objects.

9.5 Provide keyboard shortcuts to important links 3
(including those in client-side image maps), form
controls, and groups of form controls.

Guideline 10 checkpointsTABLE 19.11

Checkpoint Description Priority

10.1 Until user agents allow users to turn off spawned windows, do 2
not cause pop-ups or other windows to appear and do not
change the current window without informing the user.

10.2 Until user agents support explicit associations between labels 2
and form controls, for all form controls with implicitly
associated labels, ensure that the label is properly positioned.

10.3 Until user agents (including assistive technologies) render 3
side-by-side text correctly, provide a linear text alternative
(on the current page or some other) for all tables that
lay out text in parallel, word-wrapped columns.

10.4 Until user agents handle empty controls correctly, 3
include default, place-holding characters in edit
boxes and text areas.

10.5 Until user agents (including assistive technologies) render 3
adjacent links distinctly, include non-link, printable characters
(surrounded by spaces) between adjacent links.

Stobart-19.qxp:Stobart-19 11/7/07 6:09 PM Page 575

Guideline 11. Use W3C technologies and guidelines

Where possible, use W3C technologies such as HTML and CSS to construct your
 applications. Other technologies such as PDF and Flash, for example, do not include the
ability to build in accessibility functions and therefore may not be as accessible. When such
technologies must be used, provide equivalent accessible pages as well. Table 19.12
 illustrates the associated checkpoints for this guideline and their priority ratings.

Guideline 12. Provide context and orientation information

If you have a complex page then providing content and orientation information to help
users understand the nature and structure of the web page is very useful. Table 19.13
 illustrates the associated checkpoints for this guideline and their priority ratings.

576 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Guideline 11 checkpointsTABLE 19.12

Checkpoint Description Priority

11.1 Use W3C technologies when they are available and 2
appropriate for a task and use the latest versions
when supported.

11.2 Avoid deprecated features of W3C technologies. 2
11.3 Provide information so that users may receive 3

documents according to their preferences (e.g.,
language, content type, etc.).

11.4 If, after best efforts, you cannot create an accessible 1
page, provide a link to an alternative page that uses
W3C technologies, is accessible, has equivalent
information (or functionality), and is updated as
often as the inaccessible (original) page.

Guideline 12 checkpointsTABLE 19.13

Checkpoint Description Priority

12.1 Title each frame to facilitate frame identification 1
and navigation.

12.2 Describe the purpose of frames and how frames 2
relate to each other if it is not obvious by frame
titles alone.

12.3 Divide large blocks of information into more 2
manageable groups where natural and appropriate.

12.4 Associate labels explicitly with their controls. 2

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 576

Guideline 13. Provide clear navigation mechanisms

Ensure that you provide consistent and clear navigation mechanisms such as site maps,
‘bread-crumbs’, navigation bars, etc. Table 19.14 illustrates the associated checkpoints for
this guideline and their priority ratings.

Guideline 14. Ensure that documents are clear and simple

Ensure that your web applications are clear and simple and the use of language is not
ambiguous and that images are clear and obvious as to their function. Table 19.15 illustrates
the associated checkpoints for this guideline and their priority ratings.

19.7 WEB ACCESSIBILITY GUIDELINES AND CHECKPOINTS 577

19

Guideline 14 checkpointsTABLE 19.15

Checkpoint Description Priority

14.1 Use the clearest and simplest language appropriate 1
for a site’s content.

14.2 Supplement text with graphic or auditory 3
presentations where they will facilitate
comprehension of the page.

14.3 Create a style of presentation that is consistent 3
across pages.

Guideline 13 checkpointsTABLE 19.14

Checkpoint Description Priority

13.1 Clearly identify the target of each link. 2
13.2 Provide metadata to add semantic information to 2

pages and sites.
13.3 Provide information about the general layout of a 2

site (e.g., a site map or table of contents).
13.4 Use navigation mechanisms in a consistent manner. 2
13.5 Provide navigation bars to highlight and give access 3

to the navigation mechanism.
13.6 Group related links, identify the group (for user 3

agents) and, until user agents do so, provide a way
to bypass the group.

13.7 If search functions are provided, enable different types 3
of searches for different skill levels and preferences.

13.8 Place distinguishing information at the beginning of 3
headings, paragraphs, lists, etc.

13.9 Provide information about document collections 3
(i.e., documents comprising multiple pages).

13.10 Provide a means to skip over multi-line ASCII art. 3

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 577

Producing Triple-A accessible web sites

Having read through the W3C guidelines on accessibility you may have come to realise
that most of the Priority 1 checkpoints are quite clear in their meaning and interpretation,
for example:

1.1 Provide a text equivalent for every non-text element.

5.1 For data tables, identify row and column headers.

9.1 Provide client-side image maps instead of server-side image maps except where the
regions cannot be defined with an available geometric shape.

However, some Priority 2 checkpoints are a little more difficult to conform to, consider:

11.1 Use W3C technologies when they are available and appropriate for a task and use
the latest versions when supported.

Determining when and if a new technology is appropriate for a task can be
 problematic. For example, how often should you check for new technological
improvements and at what point should you evaluate them and decide when it is
correct to implement the technology? One developer may have decided that today
is the correct day and therefore believe that all sites not using the new technology
for the particular circumstances are no longer accessibility compliant.

13.4 Use navigation mechanisms in a consistent manner.

Some may argue that if you wish to implement certain navigational effects on a
web page, such as automatic redirection to another page then it is impossible to
have any other form of navigation as this would invalidate the ‘consistent manner’
checkpoint.

14.1 Use the clearest and simplest language appropriate for a site’s content.

Exactly what ‘simplest language’ means is open to debate and argument. What
one individual believes is a simple use of the language, another may not.

Things get even more difficult to conform to when it comes to some of the
Priority 3 checkpoints:

11.3 Provide information so that users may receive documents according to their
 preferences (e.g., language, content type, etc.).

Does this mean that a user can request a document in any format and your system
must be able to deliver it in that format otherwise the checkpoint is not met?

The point of this is to show that some of the checkpoints are very subjective in the way that
they can be interpreted. Some developers claim that, in all but the simplest of systems,
achieving a Triple-A standard web page would be very difficult indeed without leaving one
open to criticism that the checkpoints were not being strictly adhered to. The higher the
level of compliance claimed, the more difficult it is to claim that the system conforms
(which indeed should be the case). However, while some of these checkpoints are difficult

19.8

578 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 578

to achieve, the overarching concept of trying to attain a higher level of accessibility is
 obviously a highly important one. In Section 19.9, we introduce a tool which provides a
degree of support determining the level of accessibility your web page has attained.

WatchFire WebXACT

The W3C does not currently provide an automated tool in order for you to check whether
your documents or application is accessible or not and what level compliance you could
claim. This is partly because many of the accessibility guidelines are subjective and are
 difficult to quantify. There is a free on-line service called WebXACT which allows you to
check single web pages to see how accessible they are. WebXACT can be found at
http://webxact.watchfire.com/ and its welcome page is shown in Figure 19.10.

19.9

19.9 WATCHFIRE WEBXACT 579

19

WebXACT toolFIGURE 19.10

The WebXACT tool is very useful for assisting with your accessibility
issues. However, don’t think that it will do this all on its own. It will still
need some thought and judgement from you.

NOTE

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 579

The WebXACT tool allows you to specify the location of a web page for it to analyse. Any
web page that you wish to check must therefore be accessible on the Internet and you
 cannot, unlike in the case of the W3C tools, upload a page from your own computer’s test
environment.

In order to test WebXACT, we have chosen a web site at the following location:

http://www.cit.sunderland.ac.uk/

The web page is illustrated in Figure 19.11. It is the home of the Centre for Internet
Technologies at the University of Sunderland and you will note that the site claims not only
compliance to (X)HMTL 1.0 and CSS, but also that it is triple-A accessibility compliant!

Typing the URL of the site into WebXACT starts the tool. After a short while, the results
page is displayed. This is divided into four sections which assess the following areas:

● General
● Quality
● Accessibility
● Privacy

580 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Centre for Internet Technologies web siteFIGURE 19.11

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 580

Figure 19.12 illustrates the General output page and you should note that the tool found
no quality issues it wanted to report.

The tool is also able to perform a number of automated checks on the accessibility of the
web site. For those areas it cannot automatically check, it prompts the user to check
 themselves. Figure 19.13 illustrates the accessibility output from the WebXACT tool
which indicates that all automatic tests have been passed and lists a number of manual
checks for the user to perform.

The WebXACT tool is a very useful resource in checking simple accessibility errors and
making you reconsider whether you really have met the accessibility guidelines or not.
Whether you think that this site is actually triple-A compliant, we shall leave up to you
to decide.

19.9 WATCHFIRE WEBXACT 581

19
Centre for Internet Technologies: GeneralFIGURE 19.12

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 581

582 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

Centre for Internet Technologies: AccessibilityFIGURE 19.13

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 582

19

SUMMARY 583

Exercises

19.1 Consider the following XHTML script. Using the W3C validation tool, amend the
script so that it conforms correctly to its XHTML doctype.

�!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”�

�html xmlns�“http://www.w3.org/1999/xhtml” xml:lang�“en”�

�head�

�title�PHP Script�/title�

�meta http-equiv�“Content-Type” content�“text/html; charset�ISO-8859–1” /�

�/head�

�body�

�!–– File: exercsie19-1.htm ––�

�h2�What Colors would you like?�/h2�

�form action�‘processform.php’ method�‘post’�

�p�

�label for�“strNewBgCol”�Background Color: �/label�

�select name�‘strNewBgCol’ id�‘strNewBgCol’�

�option�red�/option�

�option�green�/option�

�option�blue�/option�

�option�cyan�/option�

�option�yellow�/option�

�/p�

�p�

�select name�‘strNewTextCol’ id�‘strNewTextCol’�

�option�red�/option�

�option�green�/option�

�option�blue�/option�

�option�cyan�/option�

�option�yellow�/option�

�/select�

�input type�‘submit’ name�‘submit’�

�/form�

�/body�

�/html�

19.2 Using the WatchFire WebXACT tool, take one of your favourite web sites and analyse
the report generated from the tool. In your judgement, consider what level of
 accessibility the web page has attained. Is this different from the level that the web
page claims (if any)?

In this chapter, we began by explaining the different web standards, where they can be
found and who created them. We have explained that while writing web systems which
conform to the standards takes a little bit of effort, it is a good ideal as it provides some

SUMMARY

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 583

References and further reading

Internet Engineering Task Force. Home Page. http://www.ietf.org/
Internet Society. Home page. http://www.isoc.org
Wikipedia. Home Page. http://en.wikipedia.org
World Wide Web Consortium. HomePage.http://www.w3.org
World Wide Web Consortium. Accessibility Guidelines. http://www.w3.org/TR/1999/

WAI-WEBCONTENT-19990505/. Guidelines
World Wide Web Consortium. Accessibility Images. http://www.w3.org/WAI/WCAG1-

Conformance.html
World Wide Web Consortium. CSS Validation Service. http://jigsaw.w3.org/css-vailidator/
World Wide Web Consortium. HTML 4.01 Specification. http://www.w3.org/TR/html4/
World Wide Web Consortium. HTML/XHTML Validation Service. http://validator.w3.org
World Wide Web Consortium. XHTML 1.1 Specification. http://www.w3.org/TR/xhtml11/

584 CHAPTER 19 CONFORMANCE TO STANDARDS AND ACCESSIBILITY

19

degree of insurance that your scripts will work on the largest diversity of platforms and
browsers and will be future-proofed as much as possible. We also introduced some of
the on-line validation tools which provide you with support in ensuring that your scripts
conform to the documented standards.

The chapter then introduced the concept of accessibility. We began by explaining what
accessibility could mean to different individuals. We introduced the W3C guidelines on
accessibility and described the different checkpoints and their priority. We discussed the
issues surrounding the interpretation and the subjective nature of the W3C guidelines.
Finally, we introduced the WatchFire WebXACT tool and illustrated its use in determining
the accessibility level of a web page.

Stobart-19.qxp:Stobart-19 11/7/07 6:10 PM Page 584

585

CHAPTER 20

Building More Secure and Robust
Web Applications

LEARNING OBJECTIVES

● Understand why building secure robust PHP applications is important

● Understand and be able to apply good practice in the development of PHP
applications

● Understand what malicious data injection is and how to write PHP scripts
to prevent it affecting your applications

● Understand how to implement user authentication and why it is an
important security issue for on-line systems

● Understand why ensuring the creation and subsequent protection of strong
passwords is important and know how to accomplish this.

In this chapter, we examine some good practice in the development of PHP applications in order
to ensure that they are as secure and robust as possible. PHP web applications, by their very
nature, often tend to be accessible and visible to the world as a whole and that immediately
brings with it a host of problems. Unfortunately, we live in a world where individuals seek to
exploit loop-holes in web applications. These individuals and groups may break into on-line
 systems for a number of different reasons, ranging from wishing to profit through access to
money or goods which are not their own, wishing to view confidential data for personal or polit-
ical reasons or simply to cause disruption and inconvenience to the real users of the application
in an attempt to show how clever they are.

Software developers have a professional duty to ensure that the web systems they create are
hardened as much as possible against such malicious attacks. In order to accomplish this you need
to be aware of some good programming practice which will help to ensure that your applications

INTRODUCTION

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 585

are well designed and written, and are not easily broken. In addition, you should be aware of the
various security mechanisms which you can implement in order to fortify your applications. You
should also be aware of the different forms of ‘attack’ which can be implemented and thus know
how to defend against them.

Web application security and robustness

Hopefully, our earlier chapters have demonstrated that creating PHP applications is
 relatively easy but unfortunately that is not the end of the story. In Chapter 19, we
 introduced the concepts of ensuring that any (X)HTML and CSS scripts conform to W3C
standards and that designing systems for accessibility should be considered right from the
start. As PHP is used to generate (X)HTML output, these considerations are an integral
part of the PHP script design and implementation phases. However, in addition to this, PHP
developers need to consider other aspects of their design, namely the robustness of their
software and the security of its data.

Because your web application has been installed on a secure web server is not enough
to ensure that your application is as secure and robust as possible. You need to
 implement a strategy to raise the quality and security of your applications. This strategy
consists of:

● Developing good programming practice to ensure your applications are well
 implemented.

● Being aware of the different forms of attack which could be ranged against your
application and ensuring that you have defended against them.

● Ensuring you have authenticated a valid user and have implemented a good secure
password mechanism.

We begin by examining some good PHP development practices.

Good PHP development practice

Report all errors

The first, and perhaps the most important, tip for good PHP development practice is to
ensure that you are aware of all errors and warnings that the PHP interpreter generates.
Interestingly, by default PHP does not do this and you need to edit the PHP configuration
file, called ‘php.ini’, in order to change this.

The ‘php.ini’ file can be most easily accessed from the wamp icon on the Windows application
bar, assuming this is how you installed PHP. If you did not, then you will need to search
Windows for the ‘php.ini’ file. To access the ‘php.ini’ file through wamp, left click on the wamp
icon on the right of the application bar at the bottom of your desktop and select ‘config files’.
Finally, from the menu that appears, click on ‘php.ini’. The file is illustrated in Figure 20.1.

Notepad launches with a copy of the ‘php.ini’ file loaded ready for you to edit. The file
is quite long and complex and in order to find the correct section to edit you need
to scroll down until you come to the section labelled ‘Error handling and logging’, as

20.2

20.1

586 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 586

shown below:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Error handling and logging ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; error_reporting is a bit-field. Or each number up to get desired error
; reporting level
; E_ALL - All errors and warnings
; E_ERROR - fatal run-time errors
; E_WARNING - run-time warnings (non-fatal errors)
; E_PARSE - compile-time parse errors
; E_NOTICE - run-time notices (these are warnings which often result
; from a bug in your code, but it’s possible that it was
; intentional (e.g., using an uninitialised variable and
; relying on the fact it’s automatically initialised to an
; empty string)
; E_STRICT - run-time notices, enable to have PHP suggest changes
; to your code which will ensure the best interoperability
; and forward compatability of your code
; E_CORE_ERROR - fatal errors that occur during PHP’s initial startup
; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP’s
; initial startup
; E_COMPILE_ERROR - fatal compile-time errors
; E_COMPILE_WARNING - compile-time warnings (non-fatal errors)
; E_USER_ERROR - user-generated error message
; E_USER_WARNING - user-generated warning message
; E_USER_NOTICE - user-generated notice message
;
; Examples:
;
; - Show all errors, except for notices
;

20.2 GOOD PHP DEVELOPMENT PRACTICE 587

20

The ‘php.ini’ fileFIGURE 20.1

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 587

;error_reporting � E_ALL & ~E_NOTICE
;
; - Show only errors
;
;error_reporting � E_COMPILE_ERROR|E_ERROR|E_CORE_ERROR
;
; - Show all errors except for notices and coding standards warnings
;
error_reporting � E_ALL & ~E_NOTICE & ~E_STRICT

This section of the ‘php.ini’ file allows you to adjust the level of error reporting and
 logging of these errors. The line which is of most importance to us here is the last line of
the above fragment of ‘php.ini’ file:

error_reporting � E_ALL & ~E_NOTICE & ~E_STRICT

This line sets the PHP interpreter to report all errors, but not notices (a mild form of error)
and any coding standards which it detects. We are going to replace this line with the
 following:

error_reporting � E_ALL

This line will turn on all error reporting, even the minor notice errors. Saving the ‘php.ini’
file and restarting wamp will activate the change. If you do not have access to the
‘php.ini’ file or are prevented from editing it you can force the level of error reporting in a
script through the error_reporting() function, for example:

error_reporting(E_ALL);

To illustrate the difference error reporting can make consider the following example:

�?php
// File: example20-1.php

$intNoValue;

if ($intNoValue �� 0)
echo “�p�Equals zero�/p�”;

?�

Here the script defines a variable called $intNoValue and then employs a simple ‘if ’
statement to determine if the value is equal to zero or not and displays an appropriate
message. By default, the above script runs without errors reported, with the output
 displayed being:

Equals zero

However, by changing the level of error reporting, to E_ALL we now find that a notice is
generated:

Notice: Undefined variable: intNoValue in
C:\wamp\www\book\chapter20\example20-1.php on line 6
Equals zero

588 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 588

This notice informs us that the variable $intNoValue was undefined. In other words we
have not assigned it a value before testing it in the ‘if ’ statement. This is bad programming
practice and should in fact be coded as:

�?php
// File: example20-2.php
$intNoValue � 0;

if ($intNoValue �� 0)
echo “�p�Equals zero�/p�”;
?�

When developing scripts, it is best to have the highest possible level of error checking to
ensure that we trap all errors and ensure that our code is of the highest standard.

Do not use global variables

Historically, PHP automatically generated global variables for all GET, POST, COOKIE
and SESSION variables you created. Defining global variables in this way was great for the
programmer as the scripts were quite simple. Unfortunately this simplicity came at a price,
as the global variables provided a means for a malicious user to try and break a script you
created. Interestingly PHP still allows for global variables to be created, but only when you
edit the ‘php.ini’ file and turn the facility on, something we would not recommend.

Searching the ‘php.ini’ file for the section on Data Handling reveals the following:

;;;;;;;;;;;;;;;;;
; Data Handling ;
;;;;;;;;;;;;;;;;;
;
; Note - track_vars is ALWAYS enabled as of PHP 4.0.3

; The separator used in PHP generated URLs to separate arguments.
; Default is “&”.
;arg_separator.output � “&”

; List of separator(s) used by PHP to parse input URLs into variables.
; Default is “&”.
; NOTE: Every character in this directive is considered as separator!
;arg_separator.input � “;&”

; This directive describes the order in which PHP registers GET, POST, Cookie,
; Environment and Built-in variables (G, P, C, E & S respectively, often
; referred to as EGPCS or GPC). Registration is done from left to right, newer
; values override older values.
variables_order � “EGPCS”

; Whether or not to register the EGPCS variables as global variables. You may
; want to turn this off if you don’t want to clutter your scripts’ global scope
; with user data. This makes most sense when coupled with track_vars - in which
; case you can access all of the GPC variables through the $HTTP_*_VARS[],
; variables.
;

20.2 GOOD PHP DEVELOPMENT PRACTICE 589

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 589

; You should do your best to write your scripts so that they do not require
; register_globals to be on; Using form variables as globals can easily lead
; to possible security problems, if the code is not very well thought of.
register_globals � Off

The last line of the ‘php.ini’ file should be edited to:

register_globals � On

when the ‘php.ini’ file is saved and PHP is restarted then the use of global variables
is active.

590 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Switching register_globals to ‘on’ is not considered a very good idea!NOTE

It may be that you do not have control of the ‘php.ini’ file and that your service provider
has set the register_globals variable to ‘On’ to allow some historical code to function.
However you should not be tempted by the lure of programming with global variables as
the following example will illustrate:

�!–— File: example20-3.htm —–�

�h2�Please enter your Username and Password:�/h2�

�form action�‘example20-4.php’ method�‘post’�

�p�

�label for�“strUserName”�Username: �/label�

�input type�“text” name�“strUserName” id�“intUserName”/�

�/p�

�p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“intPassword”/�

�/p�

�p��input type�“submit” name�“submit”/��/p�

�/form�

The above script implements a simple HTML form which requires the user to enter a user-
name and password. This data is then passed to the following script:

�?php
// File: example20-4.php

if (checkusernamepassword($strUserName, $strPassword))
$intOkay � 1;

if ($intOkay)
echo “Valid User confirmed”;

function checkusernamepassword($strUserName, $strPassword) {
return false;

}
?�

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 590

This script attempts to authenticate the user by passing the username and password to a
function checkusernamepassword(). The function simply returns a value of false and there-
fore the value of $strOkay should never be set to true. However, if someone were to
 create a new form script and include the following line:

�p��input type�“hidden” name�“intOkay” value�“1”/��/p�

For example:

�!–— File: example20-5.htm –—�

�h2�Please enter your Username and Password:�/h2�

�form action�‘example20-4.php’ method�‘post’�

�p�

�label for�“strUserName”�Username: �/label�

�input type�“text” name�“strUserName” id�“intUserName”/�

�/p�

�p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“intPassword”/�

�/p�

�p��input type�“hidden” name�“intOkay” value�“1”/��/p�

�p��input type�“submit” name�“submit”/��/p�

�/form�

Then, when ‘example20-4.php’ were invoked, although the value of $strOkay was
never set to true within the script because it was not initialized, the value passed from
the form would still be valid and the user would be cleared as a valid user. One way
to overcome this would be to ensure that in this instance that the variable $intOkay
was initialized at the start of the script, but this is an easy thing to miss. A better and
more secure way would be to ensure that register_globals � off and to implement the
code using the $_POST super-global associative arrays as shown in earlier chapters, for
example:

�?php
// File: example20-6.php

$intOkay�0;

if (isset($_POST[“submit”])) {
if (checkusernamepassword($_POST[“strUserName”],

$_POST[“strPassword”]))
$intOkay � 1;

}
if ($intOkay)

echo “Valid User confirmed”;

function checkusernamepassword($strUserName, $strPassword) {
return false;

}
?�

20.2 GOOD PHP DEVELOPMENT PRACTICE 591

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 591

In the above script, the global variables have been replaced by the $_POST super-global
associative arrays. The problem of the variable $intOkay being set by the form in the
 previous script does not occur as there are no global variables.

Loose typing is bad

As we described in an earlier chapter, PHP is not a strongly typed language and this can
lead to some problems if you are not careful about what you are doing.

Consider the following script which has been adapted from an article on this subject online
(http://www.onlamp.com/pub/a/php/2003/04/03/php_security.html):

�?php
// File: example20-7.php

$arrUserPasswords � array(0��””, 1��”password1”, 2��”password2”,
3��”password3”);

// Setting username and password for the test
$intUserId � 1;
$strPassword � “password1”;

// UserId within array range?
if ($intUserId � 0 || $intUserId � 3)

die (“UserId out of range”);

// UserId actually present?
if (!isset($intUserId))

die (“No UserId”);

// Password actually present?
if ($intUserId ! � 0 && !isset($strPassword))

die (“No Password”);

// Valid Password for everyone but guest?
if ($intUserId ! � 0 && $arrUserPasswords[$intUserId] ! � $strPassword)

die (“Invalid Password”);

if ($intUserId)
echo “You are a valid User”;

else
echo “You are a Guest User”;

?�

The script is part of a user authentication process (it has been simplified for the purposes
of this example). It begins by creating an array of usernames and corresponding passwords.
The usernames in this case are represented by integer values from 0 to 3. The 0 username
is representative of a guest account and no password is required:

$arrUserPasswords � array(0��””, 1��”password1”, 2��”password2”,
3��”password3”);

592 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 592

20.2 GOOD PHP DEVELOPMENT PRACTICE 593

20

The next part of the script creates the entered username (intUserId) and password
(strPassword). In a real system these would be entered via some interface such as a form:

// Setting username and password for the test
$intUserId � 1;
$strPassword � “password1”;

We can change the values stored in these variables manually to test our script. The next
lines employ an ‘if ’ construct to ensure that the value of our username (intUserId) is
between 0 and 3 as these are the only valid accounts in the username and password array:

// UserId within array range?
if ($intUserId � 0 || $intUserId � 3)

die (“UserId out of range”);

If a valid username is not detected then the script terminates with the message ‘UserId out
of range’. The next lines of code check to ensure that the variable $intUserId is actually
present and, if not, the script terminates with the message ‘No UserId’:

// UserId actually present?
if (!isset($intUserId))

die (“No UserId”);

The password is checked to see if it is present, but only when the value of $intUserId is
not 0:

// Password actually present?
if ($intUserId !� 0 && !isset($strPassword))

die (“No Password”);

Next, the script uses an ‘if ’ statement to check whether $intUserId is equal to 0 otherwise
it checks that the password in $strPassword matches that stored in the array. If not, the
script terminates with a message ‘Invalid Password’:

// Valid Password for everyone but guest?
if ($intUserId !� 0 && $arrUserPasswords[$intUserId] !� $strPassword)

die (“Invalid Password”);

Finally, if the script makes it this far, an ‘if ’ statement is used to display a message to indi-
cate if the user is a valid user or a guest user.

if ($intUserId)
echo “You are a valid User”;

else
echo “You are a Guest User”;

So far so good. But now it’s time to test our script by adjusting the values of $intUserId
and $strPassword and ensuring that the output of the script is as expected.

Table 20.1 illustrates some simple test cases which we have devised. Test 1 begins with
the values of 0 and ‘’ for the username and password and this correctly outputs ‘You are
a Guest User’. Test 2 uses the values of 1 and ‘password1’ and correctly outputs ‘You
are a valid User’. Test 3 uses the values 2 and ‘password1’ and correctly determines that

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 593

this is an ‘Invalid Password’ for this username. Test 4 uses the values 0 and 42 and outputs
the text ‘You are a Guest User’. There is some debate whether this is correct: the
 password should be blank but whether it matters or not is questionable. Finally, test 5 uses
the values ‘a’ and ‘password1’ and incorrectly outputs the text ‘You are a valid User’, as a
username of ‘a’ is not valid. So why did this happen?

594 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Username and password combinations and outputTABLE 20.1

Test Username Password Output Comment

1 0 ‘ ‘ You are a Guest User Correct
2 1 password1 You are a valid User Correct
3 2 password1 Invalid Password Correct
4 0 42 You are a Guest User Incorrect. Password

should be.
5 a password1 You are a valid User Incorrect. Username

is not valid.

Ensuring that you test your applications sufficiently is a good way of
ensuring that programming loop-holes are discovered and can be fixed.NOTE

The problems with the script lies in the fact that information entered via a form element
 cannot be assumed to be anything other than alphanumeric (containing any characters) and not
simply numeric. While we are simulating form data entry by assigning values with the lines:

// Setting username and password for the test
$intUserId � 1;
$strPassword � “password1”;

We cannot assume that data entered is numeric, for example we can write:

$intUserId � ‘a’;

Moving further down the script, things start to go wrong at this expression:

if ($intUserId !� 0 && $arrUserPasswords[$intUserId] !� $strPassword)

In the above expression the value of $intUserId ! � 0 is evaluated to false in the case of
$intUserId being equal to ‘a’ as ‘a’ doesn’t equal 0. Because of this, the rest of the expres-
sion is ignored and we arrive at the ‘if ’ expression:

if ($intUserId)
echo “You are a valid User”;

else
echo “You are a Guest User”;

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 594

Here the value of $intUserId is evaluated to ‘true’ as $intUserId contains a value other
than 0. It should be noted that being more consistent and implementing all ‘if ’ conditions
in the same way, for example using:

if ($intUserId !� 0)

in the last ‘if ’ statement would have resulted in the output being ‘You are a Guest User’,
which could be a less damaging breach to system access.

To overcome the problem of knowing if a variable contains an integer value we can use the
is_int() function:

is_int(variabletocheckforint)

In our script the function looks like this:

// Is UserId an Int?
if (!is_int($intUserId))

die (“UserId not integer”);

This ensures that values such as ‘a’ are not acceptable and ensures that we are not mixing
types within a given variable. Implementing the function to check for type and ensuring
that our ‘if ’ expressions are all consistent, results in the following more robust script:

�?php
// File: example20-8.php

$arrUserPasswords � array(0��””, 1��”password1”, 2��”password2”,
3��”password3”);

// Setting username and passwords for the test
$intUserId � ‘a’;
$strPassword � “password1”;

// Is UserId an Int?
if (!is_int($intUserId))

die (“UserId not integer”);

// UserId within array range?
if ($intUserId � 0 || $intUserId � 3)

die (“UserId out of range”);

// UserId actually present?
if (!isset($intUserId))

die (“No UserId”);

//Password actually present?
if ($intUserId !� 0 && !isset($strPassword))

die (“No Password”);

// Valid Password for everyone but guest?

if ($intUserId !� 0 && $arrUserPasswords[$intUserId] !� $strPassword)
die (“Invalid Password”);

if ($intUserId !� 0)
echo “You are a valid User”;

20.2 GOOD PHP DEVELOPMENT PRACTICE 595

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 595

else
echo “You are a Guest User”;

?�

Validate your form data

It sounds fairly obvious when you think about it but one of the key ways that malicious
users can affect the workings of a script is through the primary interface which scripts use
to communicate with users i.e. forms. Forms consist of various fields which require the
user to input data but we cannot assume that the data entered by the user is in the form
which we are expecting. To ensure that the data is in the format we expected, we need to
correctly validate the data. Failure to do this can result in scripts which behave unexpectedly
or even crash when they try to perform an operation using the invalid data.

Some form elements are easier to validate than others, for example the select, checkbox
and radio button elements. They are easier to validate as their input is more restricted
than, for example, input fields where the user has much more freedom on what they can
enter.

Consider the following example script which illustrates a simple select menu:

�h2�Please select your title:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��select name�‘strTitle’�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

�option�Dr�/option�

�/select��/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-9.php
if (isset($_POST[“submit”])) {

$strTitle � $_POST[“strTitle”];
echo “�p�Your title is $strTitle�/p�”;

}
?�

In this script the user is presented with a form consisting of two elements, a select menu
and a submit button. The user has only five choices to make from the menu and therefore
it would appear that validation is not necessary in this case as the user has very restricted
input.

There is however some improvements which can be made to increase the chance that the
user has chosen the correct title. As the script stands at the moment the select menu
defaults to the first item in the list, in this case ‘Mr’. If the user forgets to select the
 correct title from the list and simply clicks the submit button, the value ‘Mr’ will be sent
and assumed to be correct. This is illustrated in Figure 20.2.

596 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 596

However, an improvement to our script would be to include a null value for the select
menu, such as ‘–––’ as a default, for example:

�option� –––�/option�

We could then check that the user has selected a title other than this, for example:

if ($_POST[“submit”] �� “–––”)
echo “�p�Please select a title.�/p�”;

This would provide a degree of confidence that the user has made an informed choice and
not simply clicked submit as a default. The completed script now looks like this:

�h2�Please select your title:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p��select name�‘strTitle’�

�option�——–�/option�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

�option�Dr�/option�

�/select��/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-10.php

if (isset($_POST[“submit”])) {
if ($_POST[“submit”] �� “–––”)

echo “�p�Please select a title.�/p�”;
else {

$strTitle � $_POST[“strTitle”];
echo “�p�Your title is $strTitle�/p�”;

}
}
?�

20.2 GOOD PHP DEVELOPMENT PRACTICE 597

20

Select menu with no null optionFIGURE 20.2

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 597

Figure 20.3 illustrates the revised form menu.

Other form elements allow the user more freedom in the data they can input and these
include the text, password and textbox elements. The following script illustrates a simple
login form consisting of three form elements, a username input field, a password input field
and a submit button:

�h2�Please login:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“intUsername”�Username: �/label�

�input type�“text” name�“intUsername” id�“intUsername”/�

�/p��p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-11.php

if (isset($_POST[“submit”])) {
$intUsername � $_POST[“intUsername”];
$strPassword � $_POST[“strPassword”];
echo “�p�Username: $intUsername Password: $strPassword�/p�”;

}
?�

At the moment all the script does is to display the values of intUsername and strPassword
and performs no error checking. This is fine if the users always obey the rules which are:

● A username must be an 8-digit number beginning with the number 5 and containing
no non-numeric characters.

598 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Select menu with null optionFIGURE 20.3

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 598

● A password can be any combination of characters but must be a minimum of
6 characters long and a maximum of 12.

These validation criteria can be enforced in a number of different ways. First the length of
the username can be limited to 8 characters using the maxlength attribute:

�input type�“text” name�“intUsername” id�“intUsername” maxlength�‘8’/�

The maximum length of the password can be limited to 12 characters like this:

�input type�“password” name�“strPassword” id�“strPassword”
maxlength�‘12’/�

To ensure the minimum length of the username, which is 8, and the password, 6, we need
to implement some ‘if ’ constructs and employ the strlen() function:

if (strlen($intUsername) � 8)
echo “�p�Username less than 8 characters�/p�”;

if (strlen($strPassword) � 6)
echo “�p�Password less than 6 characters�/p�”;

To check that the username begins with a number 5 we need to check its first character:

if ($intUsername{0} !� “5”)
echo “�p�Username doesn’t start with a 5�/p�”;

Finally, to check that the username is all numeric characters we can use the is_numeric()
function:

is_numeric (variabletocheckfornumeric)

In our program this looks like this:

if (!is_numeric($intUsername))
echo “�p�Username needs to consist of only numbers�/p�”;

The complete script including a variable to keep count of the number of errors detected
and then checked to see if a username and password should be displayed is as follows:

�h2�Please login:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“intUsername”�Username: �/label�

�input type�“text” name�“intUsername” id�“intUsername” maxlength�‘8’/�

�/p��p�

�label for � “strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”
maxlength�‘12’/�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

20.2 GOOD PHP DEVELOPMENT PRACTICE 599

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 599

�?php
// File: example20-12.php

if (isset($_POST[“submit”])) {
$intUsername � $_POST[“intUsername”];
$strPassword � $_POST[“strPassword”];

$intErrorCount � 0;

if (strlen($intUsername) � 8) {
echo “�p�Username less than 8 characters�/p�”;
$intErrorCount��;

}
if (strlen($strPassword) � 6) {

echo “�p�Password less than 6 characters�/p�”;
$intErrorCount��;

}

if ($intUsername{0} ! � “5”) {
echo “�p�Username doesn’t start with a 5�/p�”;

$intErrorCount��;
}
if (!is_numeric($intUsername)) {

echo “�p�Username needs to consist of only numbers�/p�”;
$intErrorCount��;
}

if ($intErrorCount �� 0)
echo “�p�Username: $intUsername Password: $strPassword and all is well.�/p�”;

}
?�

Figure 20.4 illustrates the output from the script.

600 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Form field detecting errorsFIGURE 20.4

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 600

One other check we may need to implement is where the value of a data item in one form
field affects the validation criteria of another. Consider the following script:

�h2�Please select your title:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strTitle”�Title: �/label�

�select name�‘strTitle’ id�‘strTitle’�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

�option�Dr�/option�

�option�Other�/option�

�/select�

�label for�“strOther”�Other: �/label�

�input type�“text” name�“strOther” id�“strOther”/�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-13.php

if (isset($_POST[“submit”])) {
echo “�p�Your title is $strTitle.�/p�”;

}
?�

The above script implements a simple form consisting of three elements: a select menu, a
text field and a submit button. The select menu allows a user to select their title from the
menu. What we would like to include is some script which detects if the option ‘Other’
is chosen and subsequently set the strTitle variable to contain the value entered in
the $strOther text field. A further check is required that the length of the data in the
$strOther field is a minimum of two characters. Here is the additional script:

if ($strTitle �� “Other”) {
$strTitle � $strOther;

}

if (strlen($strTitle) � 2)
echo “�p�Title must be greater than two characters�/p�”;

The completed script with the above validation checks incorporated is as follows:

�h2�Please select your title:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strTitle”�Title: �/label�

�select name�‘strTitle’ id�‘strTitle’�

�option�Mr�/option�

�option�Miss�/option�

�option�Ms�/option�

�option�Mrs�/option�

20.2 GOOD PHP DEVELOPMENT PRACTICE 601

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 601

�option�Dr�/option�

�option�Other�/option�

�/select�

�label for�“strOther”�Other: �/label�

�input type�“text” name�“strOther” id�“strOther”/�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-14.php

if (isset($_POST[“submit”])) {
$strTitle � $_POST[“strTitle”];
$strOther � $_POST[“strOther”];

if ($strTitle �� “Other”) {
$strTitle � $strOther;

}

if (strlen($strTitle) � 2)
echo “�p�Title must be greater than two characters�/p�”;

else
echo “�p�Your title is $strTitle.�/p�”;

}
?�

Figure 20.5 illustrates the output from the script.

Countering malicious data injection

Escaping HTML elements in text fields

Another security breach which can be overcome is that of injecting HTML elements into
form text, password and textarea fields. This is closely related to the issue of form data

20.3

602 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Cross-field validationFIGURE 20.5

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 602

validation and once again concerns the subject of whether the data you have is what you
expected. Consider the following script:

�h2�Please enter your message:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strMessage”�Message: �/label�

�textarea name�“strMessage” id�“strMessage”��/textarea�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-15.php

if (isset($_POST[“submit”])) {
$strMessage � $_POST[“strMessage”];

echo “�p�Your message is $strMessage.�/p�”;
}
echo “�p�This is some text further down the web page.�/p�”;
?�

The above script displays a form consisting of two elements: a textarea and a submit
 button. A user is free to type a message in the textarea which, once submitted, is displayed
on the web page. This is illustrated in Figure 20.6, where the message ‘Isn’t PHP great?’ is
displayed.

The problem comes when a user decides to enter a message which includes some
(X)HTML elements. They are free to do this as (X)HTML is just text after all and this
is known as (X)HTML injection. An example of this could be where a user enters
‘�h1�This is large!�/h1�’ as the message. In this case, the user’s message is displayed
as a level 1 heading. Worse than that, if a user enters only the first part of a multiple part
element the whole display of the web page can be affected from that point onwards.
Consider the message ‘�i�Hello, this is in italics’. The result of this displays the mes-
sage in italic characters but also the text following the message. This is illustrated in
Figure 20.7.

To overcome this vulnerability, you can use the PHP function htmlentities(). In its
 simplest form, it looks like this:

htmlentities (string string)

The function translates ‘�’ characters into the character entity ‘<’ and ‘�’ into the
 character entity ‘>’. These are displayed as the characters ‘�’ and ‘�’ respectively in a
browser but a browser does not recognize them as being the start and end of an (X)HTML
element and therefore does not parse the (X)HTML element. The following script illustrates

20.3 COUNTERING MALICIOUS DATA INJECTION 603

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 603

the incorporation of the function to prevent (X)HTML injection:

�h2�Please enter your message:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

�p�

�label for�“strMessage”�Message: �/label�

�textarea name�“strMessage” id�“strMessage”��/textarea�

604 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20 HTML injectionFIGURE 20.7

Displaying text messagesFIGURE 20.6

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 604

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-16.php
if (isset($_POST[“submit”])) {

$strMessage � $_POST[“strMessage”];

echo “�p�” . htmlentities(“Your message is “ . $strMessage) . “.�/p�”;
}
echo “�p�This is some text further down the web page.�/p�”;
?�

The output from the above script is illustrated in Figure 20.8.

20.3 COUNTERING MALICIOUS DATA INJECTION 605

20

If you don’t write your code to prevent HTML injection and your
 application allows such user input it will only be a matter of time until
this occurs either deliberately or accidentally.

NOTE

Escaping characters and SQL injection

Another form of character injection can be a little more sinister and this is known as SQL
injection. To explain SQL injection we need to create a database and populate it with some
data. We will create a database called ‘users’ with a single table called ‘users’. The table
fields and field types are shown in Table 20.2.

HTML injection preventedFIGURE 20.8

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 605

606 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

And suppose that we populate this with the data shown in Table 20.3.

Now we can create a simple script to allow us to access the database:

�?php
// File: example20-17.php

$strUsername � ‘David’;
$strPassword � ‘Regan’;

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“users”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM users WHERE username � ‘$strUsername’ “);

$arrRecords � mysql_fetch_array($dbRecords);
if ($strPassword !� $arrRecords[“Password”])

echo “�p�Invalid Password/Username�/p�”;
else

echo “�p�Password and Username match!�/p�”;
?�

The script is a basic username and password verification script. We start with a username
and password which we can assume the user has entered (but for the sake of simplicity we
have hard-coded into the script). We then check the database for the username, reporting
an error if it is not present and finally check if the database stored password matches that
supplied along with the username. You should find that the script works fine.

However, what if the username value of ‘David’ was replaced with:

“‘ OR ‘1 � 1”;

Table users: fields and typesTABLE 20.2

Field Type Other

Id Int Auto_increment, primary key
Username Varchar (30)
Password Varchar (30)

Table users: dataTABLE 20.3

Id Username Password

1 Alan Smith
2 David Regan

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 606

To be clear the above value of $strUsername consists of the following characters:

Double-quote
Single-quote
Space character
OR
Space character
Single-quote
1
�

1
Double-quote
Semi-colon

$strPassword is set to blank:

$strPassword � ‘’;

The script now looks like this:

�?php
// File: example20-18.php

$strUsername � “‘ OR ‘1�1”;
$strPassword � ‘’;
$dbLocalhost � mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());

mysql_select_db(“users”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM users WHERE username � ‘$strUsername’ “);

$arrRecords � mysql_fetch_array($dbRecords);
echo $arrRecords[“Password”];
if ($strPassword !� $arrRecords[“Password”])

echo “�p�Invalid Password/Username�/p�”;
else

echo “�p�Password and Username match!�/p�”;
?�

The problem is that when it now runs, the script returns the string ‘Passwords and
Usernames match!’ and our security has been breached through changing the SQL state-
ment. The above works because the SQL statement with the contents of $strUsername
expanded now reads:

SELECT * FROM users WHERE username�‘’ OR ‘1�1’

This actually returns no records and as the password is set to null, the ‘if ’ statements
 comparing the passwords evaluates to true. Therefore the script thinks that the username
and password matches.

SQL injection can be prevented through the use of the mysql_escape_string() function:

mysql_escape_string (string unescaped_string)

20.3 COUNTERING MALICIOUS DATA INJECTION 607

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 607

This function escapes quotation characters in the SQL string so that, in our example, the
query looks like this:

SELECT * FROM users WHERE username�‘\’ OR \’1�1’

The escaped characters remove the danger of the quotes being interpreted incorrectly by
the SQL parser. In addition, it is important to ensure that you include code which checks
to see if any records have been returned from the database by your query. If you are
expecting one and none are returned there is a potential problem. We can use the
mysql_num_rows() function to do this, for example:

if (mysql_num_rows($dbRecords) !� 1)
echo “�p�Username not found!�/p�”;

Our amended script now looks like this and removes the possibility that SQL injection will
be able to circumvent our login security:

�?php
// File: example20-19.php

$strUsername � “‘ OR ‘1�1”;
$strPassword � ‘’;

$dbLocalhost � mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(“users”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$strUsername � mysql_real_escape_string($strUsername);

$dbRecords � mysql_query(“SELECT * FROM users WHERE username � ‘$strUsername’ “);

$arrRecords � mysql_fetch_array($dbRecords);

if (mysql_num_rows($dbRecords) ! � 1)
echo “�p�Username not found!�/p�”;

else {

if ($strPassword !� $arrRecords[“Password”])
echo “�p�Invalid Password/Username�/p�”;

else
echo “�p�Password and Username match!�/p�”;

}
?�

User authentication and passwords

Checking the referrer

We briefly introduced the concept of checking the referrer page in an earlier chapter, but
here is a recap. Consider the following script:

�?php
// File: example20-20.php

20.4

608 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 608

if(isset($_POST[“submit”])) {
$strUserPass � array (“john” �� “red”,

“simon” �� “green”,
“liz” �� “blue”,
“david” �� “yellow”);

if ($strUserPass[$_POST[“ strUsername”]] �� $_POST[“strPassword”])
header(“location: example20-21.php”);

echo “�h1�Incorrect Username and/or password!�/h1�”;
}
?�

�form method�“post” action�“”�

�p�

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/��/p�

�p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/��/p�

�p��input type�“submit” name�“submit” /��/p�

�/form�

The above script outputs a form consisting of three elements: a text field, a password field
and a submit button. The user enters a username and password and these are then checked
against a simple array of usernames and passwords. If a match is found then the user is
 redirected to a new page like this:

�?php
// File: example20-21.php

if ($_SERVER[“HTTP_REFERER”])
if ($_SERVER[“HTTP_REFERER”] !� “http://localhost/Book/example20-20.php”)

header(“location: example20-20.php”);
?�

�h1�Well, done you are correctly logged in!�/h1�

Obviously we don’t want the user or some malicious person to be able to jump directly to
the second page by typing into the browser the address of the second page and completely
bypassing the security we have put in place, for example:

http://localhost/example20-21.php

To stop this we have included the following lines at the top of the second script:

if ($_SERVER[“HTTP_REFERER”])
if ($_SERVER[“HTTP_REFERER”] !� “http://localhost/Book/example20-20.php”)

header(“location: example20-20.php”);

These check the value ‘HTTP_REFERER’ which is held in the associative array $_SERVER.
In this instance we need to check whether the value stored is equal to:

http://localhost/Book/example20-20.php

This value indicates the address of the page from which the current page was launched. If
the user correctly completed the username and password login form then this will be set

20.4 USER AUTHENTICATION AND PASSWORDS 609

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 609

to the value above. If however they simply typed the address of the second page directly into
the browser then this value will not be set correctly and we know that something is wrong.
The script then uses the header() function to redirect the browser to the initial login form:

header(“location: example20-20.php”);

Sessions for authentication

Sessions can also be used to enhance the security of a web application. Consider the
 following script:

�?php
// File: example20-22.php

if(isset($_POST[“submit”])) {
$strUserPass � array (“john” �� “red”,

“simon” �� “green”,
“liz” �� “blue”,
“david” �� “yellow”);

if ($strUserPass[$_POST[“strUsername”]] �� $_POST[“strPassword”]) {
session_start();
$_SESSION[‘strUsername’] � $_POST[“strUsername”];
header(“location: example20-23.php”);

}
echo “�h1�Incorrect Username and/or password!�/h1�”;

}
?�

�form method�“post” action � “”�

�p�

�label for�“strUsername”�Username: �/label�

�input type�“text” name�“strUsername” id�“strUsername”/��/p�

�p�

�label for�“strPassword”�Password: �/label�

�input type�“password” name�“strPassword” id�“strPassword”/��/p�

�p��input type�“submit” name�“submit” /��/p�

�/form�

�/body�

�/html�

This script is similar to ‘example20-20.php’ except that, before it directs the browser to a
new page, it starts a session and stores the value of username:

session_start();
$_SESSION[‘strUsername’] � $_POST[“strUsername”];

The script then calls script ‘example20-23.php’:

�?php
// File: example20-23.php

session_start();
if (!isset($_SESSION[‘strUsername’]))

610 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 610

header(“location: example20-22.php”);

unset($_SESSION[‘strUsername’]);
?�

�h1�Well, done you are correctly logged in!�/h1�

This script starts a session and then checks to see if the session variable strUsername has
been set:

session_start();

if (!isset($_SESSION[‘strUsername’]))

If it has not, then the script assumes that the user did not arrive at this current script via
‘example20-22.php’ and returns the user to this script.

20.4 USER AUTHENTICATION AND PASSWORDS 611

20

You can of course increase your security further by combining both
session and referral checking in the same script.NOTE

Store passwords in encrypted form

You may wish to store a user’s password in a database similar to the database example we
used earlier in this chapter. Table 20.4 illustrates the database table structure we devised
previously and can reuse.

This time however, instead of storing the passwords as text as we did previously, we are
going to store them in encrypted form. The advantage of this is that if someone does breach
the security of your database and gain access to the database records they will not gain
access to the passwords for each of your users. We can use the md5() function to create
an encrypted version of the password for storage.

Entering MD5 data in MySQL would appear to be hard but the designers of the
PHPMyAdmin interface have made things easy. When you wish to store data in MD5
 format you simply enter the data in unencrypted and then select the MD5 function as
 illustrated in Figure 20.9.

Doing this results in the database storing the passwords (‘Smith’ and ‘Regan’) as indicated
in Table 20.5.

Finally, in order to access and check that the password entered via a form matches those
in a database we need to convert the entered password to its encrypted form before

Database user fields and typesTABLE 20.4

Field Type Other

Id Int Auto_increment, primary key
Username Varchar (30)
Password Varchar (30)

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 611

 comparing it with that stored in the database, as shown here:

// File: example20-24.php

$strUsername � ‘David’;
$strPassword � ‘Regan’;
$dbLocalhost � mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());

mysql_select_db(“users”, $dbLocalhost)
or die(“Could not find database: “ . mysql_error());

$dbRecords � mysql_query(“SELECT * FROM users WHERE username�‘$strUsername’ “);

$arrRecords � mysql_fetch_array($dbRecords);
if (md5($strPassword) !� $arrRecords[“Password”])

echo “�p�Invalid Password/Username�/p�”;
else

echo “�p�Password and Username match!�/p�”;
?�

612 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Table users: dataTABLE 20.5

Id Username Password

1 Alan e95f770ac4fb91ac2e4873e4b2dfc0e6
2 David 09e9de9b75f2014dd8abe9dbe3a0d9fd

Storing MD5 data in MySQLFIGURE 20.9

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 612

20

Enforce strong passwords

The final security enhancement we can suggest in this chapter concerns the quality of
 passwords which you let your users select. Your system should advise your users on the
strength of their password and enforce a minimum standard. For example a simple system
could be to score 1 point for each of the following rules a user’s password meets:

● a minimum length (no less than 6 characters)
● contains upper case letters
● contains lower case letters
● contains at least one number
● contains at least one other character, such as !£$%^&*@#�

A password such as ‘simonstobart’ would only score 1 point on the above scale and rightly
so, as it would be quite easy to guess. A password such as ‘Hy6^gDs3�’ would score
5 points and is far more secure but is more difficult to remember.

One method to help make passwords secure but still memorable is to convert some of your
letters into ‘Leet Speak’ (http://en.wikipedia.org/wiki/Leet). This is a form of English
developed on-line where certain letters are replaced with numbers or other characters. The
result is a word which looks similar to the original and is therefore memorable but is far
more difficult to guess. Table 20.6 lists some letters and their Leet Speak translations.

20.4 USER AUTHENTICATION AND PASSWORDS 613

Leet Speak is not yet standardized across the web and so different
translations of characters and letters are widespread.NOTE

Leet Speak letter translationsTABLE 20.6

Letter Leet Character

A @ or 4
B 8
E 3 or &
H #
I 1
L 1 or £
O 0 or *
P 9
S 5 or $
Z 2

The following script is a simple tool to help you convert a memorable word into a more
secure Leet Speak one:

�h2�Password suggestor:�/h2�

�form action�‘�?php echo $_SERVER[“PHP_SELF”]; ?�’ method�‘post’�

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 613

614 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

�p�

�label for�“strWord”�Word: �/label�

�input type�“text” name�“strWord” id�“strWord”/�

�/p�

�p��input type�‘submit’ name�‘submit’/��/p�

�/form�

�?php
// File: example20-25.php

if (isset($_POST[“submit”])) {
$strPassword � generatePassword($_POST[“strWord”]);

echo “�p�$strPassword�/p�”;
}

function generatePassword($strWord) {
$intWordLength � strlen($strWord);
$strPassword � “”;
srand((double) microtime() * 1000000);

for ($intLetter � 0;$intLetter�$intWordLength;$intLetter��) {
if ($strWord{$intLetter} �� ‘o’ || $strWord{$intLetter} �� ‘O’)

if (rand(0,1))
$strPassword .� ‘0’;

else
$strPassword .� ‘*’;

elseif($strWord{$intLetter} �� ‘l’ || $strWord{$intLetter} �� ‘L’)
if (rand(0,1))

$strPassword .� ‘£’;
else

$strPassword .� ‘1’;
elseif($strWord{$intLetter} �� ‘i’ || $strWord{$intLetter} �� ‘I’)

$strPassword .� ‘1’;
elseif($strWord{$intLetter} �� ‘z’ || $strWord{$intLetter} �� ‘Z’)

$strPassword .� ‘2’;
elseif($strWord{$intLetter} �� ‘e’ || $strWord{$intLetter} �� ‘E’)

if (rand(0,1))
$strPassword .� ‘&’;

else
$strPassword .� ‘3’;

elseif($strWord{$intLetter} �� ‘s’ || $strWord{$intLetter} �� ‘S’) {
if (rand(0,1))

$strPassword .� ‘5’;
else

$strPassword .� ‘$’;
}

elseif($strWord{$intLetter} �� ‘b’ || $strWord{$intLetter} �� ‘B’)
$strPassword .� ‘8’;

elseif($strWord{$intLetter} �� ‘p’ || $strWord{$intLetter} �� ‘P’)
$strPassword .� ‘9’;

elseif($strWord{$intLetter} �� ‘a’ || $strWord{$intLetter} �� ‘A’) {
if (rand(0,1))

$strPassword .� ‘@’;

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 614

else
$strPassword .� ‘4’;

}
elseif($strWord{$intLetter} �� ‘h’ || $strWord{$intLetter} �� ‘H’)

$strPassword .� ‘#’;
else {
if (rand(0,1))

$strPassword .� strtoupper($strWord{$intLetter});
else

$strPassword .� strtolower($strWord{$intLetter});
}

}
return $strPassword;

}
?�

The script implements a function which parses each letter of the word you enter via the
form and decides (in some case randomly) which letters to convert to numbers and
 characters and whether any remaining letters should be upper or lower case. Figure 20.10
illustrates the output from the above script in parsing the password ‘simonstobart’.
Remember the output from the script is random so you can get different output each time
you run the script.

20.4 USER AUTHENTICATION AND PASSWORDS 615

20

Generating Leet Speak passwordsFIGURE 20.10

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 615

616 CHAPTER 20 BUILDING MORE SECURE AND ROBUST WEB APPLICATIONS

20

Exercises

20.1 Consider the following script, which is designed to display the surname of ‘Alan’
three times:

�?php
$intCount;

$arrFirstSurnames � array(Simon ��”Jones”, James ��”Smith”,
Alan ��”Barclay”, Gemma ��”West”);

for ($intA�0;$intA��$intCount;$intA��)
echo $arrFirstSurnames[Alan] . “ “;

?�

Determine what errors are included and correct them. If you have only found one
error then you are not trying hard enough.

20.2 Write a script which validates the following form fields according to the following
rules:

Day of Month
Month
Year

Day of Month
Month
Year

The two dates should both be checked to ensure they are valid dates.

The second date must be a minimum of 30 days greater than the first.

20.3 Write a script which implements a function to determine the strength of a generated
password. Your script should score the strength of the password by adding 1 point for
each of the following rules the password matches (to a total score of 5):

● a minimum length (no less than 6 characters)
● contains upper case letters
● contains lower case letters
● contains at least one number
● contains at least one other character, such as !£$%^&*@#�

In this chapter, we began by explaining why it is important to build secure, robust PHP
applications and that as a software professional it is vital that you pay due diligence to
this fact when developing your web systems.

SUMMARY

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 616

20

REFERENCES AND FURTHER READING 617

References and further reading

Malcolm, C. (2003) Ten Security Checks for PHP, Part 2. http://www.onlamp.com/pub/a/
php/2003/04/03/php_security.html

Wikipedia. Leetspeak. http://en.wikipedia.org/wiki/Leet

We have addressed the issue of building robust and secure web systems by addressing
PHP web development from three angles. Firstly the issue of understanding and being
able to apply good development practice was introduced. Secondly, we described
some of the various hacking attacks which may be employed against your application
and presented various means by which these can be countered. Finally, we discussed the
issue of user authentication and why is it is a vitally important security issue. As part of
this we discussed how to ensure the creation and subsequent protection of strong
 passwords.

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 617

Stobart-20.qxp:Stobart-20 11/7/07 5:42 PM Page 618

619

Using XMLSpy

XMLSpy is an XML editor from Altova® GmbH that provides tools for modelling, editing,
 transforming and debugging XML technologies. Among its many features, it provides support for
XML validation.

This appendix refers to the Altova® XMLSpy 2007 Enterprise Edition which is supplied with this
book. The current version, along with an evaluation licence key, can be downloaded
from http://www.altova.com/download. Altova are also able to provide special site licences for
educational partners and extended evaluation licences for students enrolled on recognized
 courses. Enquiries by academic staff should be made to the Altova Partner program
 (partners@altova.com).

Why do we need XMLSpy?

Browsers such as Internet Explorer can check if XML and DTD documents are well
formed. Figure 1 shows Internet Explorer 7 displaying an error message about an XML
document that is not well formed.

Most browsers do not, however, validate XML documents without special tools being
added. In addition, browsers offer little editing support for XML documents. Therefore it
can be much more productive to edit and process XML documents using a dedicated tool
like XMLSpy, which can, among other things:

● Check if XML documents are well-formed
● Validate XML documents against DTD
● Validate XML documents against an XML Schema
● Perform XSLT transformations
● Display HTML / XHTML

INTRODUCTION

619

APPENDIX

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 619

620 APPENDIX

The XMLSpy windows and helpersFIGURE 2

Internet Explorer 7 displaying an error message because an XML
 document is not well formed

FIGURE 1

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 620

Using XMLSpy

To install XMLSpy, you will need to run the installation file, which is available both on the
CD supplied with this book and from the Altova web site. Once the program has been
installed, you will need to run it for the first time in order to enter your license details.
These can be copied from the email that will be received from Altova once you have
applied for an evaluation licence.

The XMLSpy environment comprises a number of windows and ‘helpers’ (Figure 2), which
can be toggled on and off using the ‘Window’ menu item. The left hand view is the ‘Project’
window, but you do not have to use a project in XMLSpy. Documents can be created and
manipulated independently of a project file. However a project is useful if you want to
group multiple documents together for loading and saving as a unit, for example an XML
file and its associated DTD.

Creating a New File

To create a new file, click on the ‘File’ menu and then select ‘New’. A dialog box will
appear similar to that shown in Figure 3. From here, you can choose the type of file you
want to create, for example a new XML document.

If you choose to create a new XML document, another dialog will appear that asks you to
choose either a DTD or an XML Schema to validate the document (Figure 4). If you
do not yet have one of these, you can simply click the ‘Cancel’ button. Otherwise
 another dialog will appear that lets you browse for a DTD or an XML Schema to apply
to the document.

Testing if XML Documents are Well-Formed and Valid.

USING XMLSPY 621

The ‘Create new document’ dialog in XMLSpyFIGURE 3

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 621

622 APPENDIX

XMLSpy indicating that an XML document is not well-formedFIGURE 5a

You can use XMLSpy to test if XML documents are both well-formed and valid. The XML
source can be typed directly into editing the window, copied and pasted from an external
 editor or loaded from an external file (XMLSpy also provides a number of different
 editing views that make it easy to create and edit a document). To test if the XML
 document is well formed, select ‘XML’ from the main menu and then select ‘Check well-
formedness’. The result will appear in the output window at the bottom of the screen.
Figure 5a shows an XML document that is not well formed, with an error message
 displayed in the output window.

Figure 5b shows the ‘tick’ icon that appears if the document is well formed.

The Dialog that enables a DTD or XML Schema to be assigned to a
new XML document

FIGURE 4

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 622

USING XMLSPY 623

The dialog that enables you to browse for a validating documentFIGURE 6

XMLSpy indicating well-formed XML documentFIGURE 5b

Validating XML

To validate an XML document you can assign either a DTD or an XML Schema. This
assignment can either be done manually or by browsing for the validating document via the
‘DTD/Schema’ menu item. To assign a DTD, for example, select ‘Assign DTD’ from the
‘DTD/Schema’ menu and find the document in the file system (Figure 6).

Once a DTD has been assigned to an XML document, you can check if it is valid by selecting
‘XML’ from the top level menu and then selecting ‘validate’ from the menu. Figure 7 shows
an error message being displayed by XMLSpy because an XML document has failed
 validation.

Figure 8 shows a valid document being checked by XMLSpy.

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 623

624 APPENDIX

An XML document passing validation in XMLSpyFIGURE 8

XMLSpy indicating that an XML document has failed validationFIGURE 7

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 624

USING XMLSPY 625

Further information

For further information about XMLSpy, refer to the Altova web site (http://www.altova.com) or
the ‘Help’ facility within XMLSpy itself (accessible from the main menu bar).

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 625

Stobart-App.qxp:Stobart-App 11/6/07 10:12 PM Page 626

627

accessibility see conformance to
standards and accessibility

accessing form elements 291–8
checkboxes 292–3
image fields 297–8
radio buttons 291–2
selections 293–5
textareas 295–6

action object 44
ActiveX object 212–13
actors 33–4
Adobe Acrobat 9
Advanced Research Projects Agency

see ARPA
agility 20
Ajax 13–6, 156, 210–21

ActiveX object 212–13
architecture 210
asynchronous communication 211
definition 211
Google Suggest 210
MSXML 212
one-page web application 210
RSS 216–17
writing with JavaScript 211–16
XMLHttpRequest 210–16
XMLHttpRequest object

methods 216
XMLHttpRequest object

properties 216
XMLHttpRequest security issues

217–18
XMLHttpRequest server

connection 218–19
XMLHttpRequest and XML data

reading 219–21
Ajax and PHP 525–55

dynamic histogram 539–45
implementing Ajax 526–7
simple calculator 527–31
simple chat system 545–51
simple database stock

example 531–5
zooming photo thumbnail

application 535–9
alternate flows 39
Amazon 1
American National Standard Institute

see ANSI
analysis and design 41–2

architectural design 42
static and dynamic content 42
technology-aware 41–2

analysis tools 30–8
designing pages and webflow with

storyboards 36–8
domain model 30–2
system sequence diagrams 36
use case diagrams 33–6

anchors 69–70, 115
ANSI 54
APIs 13, 16
apostrophe 55
Application Programming Interface

see API
arguments

default 381–2, 484–5
and function 378–9
multiple 379–81
passed by reference 385–6
passed by value 385

ARPA 4, 16
ARPAnet 4

array
with forms 324–7
and objects 481–2

array creation 317–24
array with key 318–19
arrays and non-numerical

keys 321
foreach 319–21
multi-dimensional arrays 322–3
non-numerical keys with multi-

dimensional arrays 323–4
one-dimensional arrays 321–2
simple array 317–18

array manipulation 327–8
add element to end of array

329–31
count array elements 327–8
counting occurrences 334–5
pushing and popping 332–4
replace array element 328–9
sort multi-dimensional arrays

336–8
sort simple arrays 335–6
walking an array 331–2

Asynchronous JavaScript and XML
see Ajax

attribute names 58
attributes in tags 55–6
authentication 8

B2B systems 10, 16
XML 128

B2C web sites 10

Berners-Lee, Tim 4
HTML 57

block and inline elements 106–9
blog 2, 16
Booch, Grady 22

Booch method 22
breadcrumbs 47
breaking out of loops 270–1
browsers 9
bulleted list 65
business objectives 26
Business to Business see B2B systems
button

events 195–7
gravity 3

card-storming approach 27
Cascading Style Sheets see CSS
CERN 4, 16, 57, 90
CGI 5
checkboxes 292–3
citations and block quotes 62–4
class abstraction 509–10
class attribute 103–4
class constants 513–14
client-side form validation 201–9

dialogs and validation routes 203–6
form component validation 206–9
functions to process forms 201–2
pop-up dialogs 202–3
surface validation 201

color 91–3
Common Gateway Interface see CGI
concurrency 2
conformance to standards and

accessibility 555–84
advantages 567
CSS validation 564–7
HTML and XHTML 556–60
software standards and web

standardisation 556
Triple-A accessible web sites

578–9
W3C Markup Validation Service

560–4
WatchFire WebXACT 579–82
web accessibility 567–70
web accessibility guidelines and

checkpoints 570–7
Conseil Européen pour la Recherche

Nucléair see CERN
construction phase 24–5
constructors 479–81

627

INDEX

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 627

628 INDEX

content, structure and validation
123–54

HTML limitations 123–5
semi-structured data 125–7
XHTML 149–51
XML 127–9
XML components 129–36
XML document validation 137–49

content type 59, 68
continuing a loop 272
cookies 43, 350–5

creation 350–3
deleting 353
reading 353
store multiple data items 353–5

Create, Read, Update, Delete see
CRUD

CRUD 12, 16
CSS 50, 53, 58, 89–121, 188

block and inline elements 106–9
color 91–3
page layout 114–18
presentation separation 89–91
style application 103–6
style sheet cascades 112–14
style sheets 94–102
styles for lists/tables 109–12
syntax 91–3
validation 564–7

CSS for page layout 114–18
active 115
CSS with anchors 115
hover 115
layout style application 116–18
link 115
pseudo-class 115
visited 115

data
about data 54
retention 300–6
see also malicious data injection

data in phpMyAdmin 413–27
adding data 418–19
backing up database 421–5
deleting tables 425
editing records 420–1
restoring database 425–7
special field attributes 414
table creation 413–18
viewing records 419–20

database extension 428–32
data 432
design 428–32

database management system
see DBMS

databases 401–33
creation 406–7
data in phpMyAdmin 413–27
DBMS 402
definition 402

extension 428–32
field types 404–5
MySQL 402
phpMyAdmin interface 405–10
relational database fields and

tables 402–4
table keys 410–12
viewing 407–10

date array 390
date function 391
default arguments 381–2, 484–5
design

guidelines 50
patterns 14
see also analysis and design

destructors 481
DHCP 6, 16
DHTML 156, 188–91

CSS 188
DOM 188
DOM navigation 188–9
DOM value changing 191
nodes 189–90

diagramming classes 496
digital certificates 8
DNS 6, 16
do-while loop construct 266–7
Document Object Model see DOM
document order 127
Document Type Definitions see DTDs
DOM 124–5, 155–6, 188

child node 156
element node 156
leaf node 156
navigation 188–9
text node 156
value changing 191

domain model 30–2
cardinality 30
concepts 31–2

Domain Name System see DNS
domain names 6–7

DNS 6
IANA 6
ICANN 6
resolver programs 6
root domain 6
zones 6

dot coms 4, 26
Driver and Vehicle Licensing Agency

see DVLA
DTD attribute declarations 146–9

CDATA 147
default values 148
enumerated type 148
keywords 147
name token 148
uses 146–7

DTD element declarations 143–6
DTD operator symbols 144–5
empty elements 145–6

DTDs 61, 125, 137–43
elements 138–9
frameset 61
prolog 139–40
separation from XML

document 141
strict 61
system/public doctype 141–3
transitional 61
validating XML with XMLSpy 141

DVLA 402
dynamic content 2
Dynamic Host Configuration Protocol

see DHCP

e-business 5
ECMAScript 156–7, 175
elaboration phase 24

executable architecture 24
walking skeleton 24

element names 58
email links 70–1

anchors 70
emailing users 366–70

simple mail message 366–7
XHTML messages 367–70

empty elements 62, 145–6, 150–1
entities 149
Eriksson 22
error reporting 584–9
executable architecture 24
eXtensible Markup Language

see XML
extranets 10

File Transfer Protocol see FTP
file uploads 298
files 342–50

add to existing file 348–9
check if file exists 350
create new file 347–8
opening and closing 342–50
read entire file 346–7
reading 344–6
size 346

files, cookies, session, email 341–71
cookies 350–5
emailing users 366–70
files 342–50
sessions 355–60
uploading files from forms 360–5

final keyword 519–20
Flash 9
flow of control 253–75

breaking out of loops 270–1
continuing a loop 272
do-while loop construct 266–7
foreach construct 269
if construct 254–9
for loop construct 267–9
nested loops 269–70

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 628

INDEX 629

switch construct 259–63
while loop construct 264–6

focus groups 27
font 95–8

cursive 95–8
fantasy 95–8
monospace 95–8
sans-serif 95–8
serif 95–8
size 99–100

for loop construct 267–9
foreach construct 269
form data validation 596–602
form interaction 277–308

accessing form elements 291–8
example form 288–91
file uploads 298
form validation and data retention

298–306
hidden data 306–7
invoking correct script 287–8
PHP and form interaction 278–9
PHP and forms 284–7
simple form 279–84

form validation and data retention
298–306

data retention 300–6
present or absent? 298–300

Formal Public Identifier see FPI
forms 76–84

denial of service 78
elements 77–8
get request 78
input types 78–82
post request 78
select lists 83–4
text areas 82–3

FPI 142
frameset doctype 149
FTP 5, 16
functions 374–88

arguments passed by reference
385–6

arguments passed by value 385
creation with an argument 378–9
default arguments 381–2
definition 374
functions within functions 386–7
invocation 374
loops 382
multiple arguments 379–81
and objects 483–4
recursive 387–8
returning more than one value

384–5
returning a value 382–4
user-defined functions 374–5
variables and scope 376–8

functions, dates, times and redirection
373–400

fruit-machine example 393–5

functions 374–88
page redirection and referral

395–9
random numbers 392–3
separating source files 388–9
time and date 389–92

General Electric 22
GIF 68
global variables 589–92
GML 54
goals 34
Goldfarb, Mosher, Lorie see GML
Google 1
Google Suggest 210
Graphics Interchange Format see GIF

Health Level 7 see HL7
hidden data 306–7
HL7, XML 128
HOLMES 402
Home Office Large Major Enquiry

System see HOLMES
home page 48
HotJava 5
HTML 8–9, 16, 37, 53, 56–7

browsers 9
character references 64
elements 86
hyperlinks 57
IETF 57
plugins 9
tags 8–9, 57
see also structure/content of

presentation layer
HTML attributes 68–71

email links 70–1
images 68–9
links 69–70

HTML document structure 57–60
attribute names 58
content types 59
CSS 58
document creation 58–9
element names 58
structural elements 58
text elements 59–60

HTML document type 61
DTDs 61
type definition 61

HTML limitations 123–5
DOM 124–5
poorly formed documents 124–5
structure 125
validation 124

HTML and XHTML 556–60
specification 556–7
strictly conforming documents

558–9
strictly conforming XHTML

documents 559–60

strictly non-conforming documents
558

HTTP 7–8, 16
authentication 8
digital certificates 8
HTML 7
HTTPS 8
PKI 8
request-response protocol 7–8
requests 7–8
SSL 8

hyperlink 57, 69
HyperText Markup Language see

HTML
HyperText Transfer Protocol see HTTP

IANA 6, 16
IBM 22
ICANN 6
id attribute 106
idiomatic (phrase) elements 64
IETF 57

software standards 556
if construct 254–9

else statement 256
elseif statement 258–9

image fields 297–8
images 68–9

content type 68
GIF 68
JPEG 68
PNG 68

inception phase 24, 26
spikes 24

inheritance 497–501
innerHTML and DOM 194–5
input types

checkboxes 80–1
controls 78
radio buttons 80–2

inserting, deleting, amending records
453–8

amending records 457–8
deleting records 455–6
inserting records 453–4

interactive JavaScript 187–224
International Standards Organisation

see ISO
Internet 4–5

ARPAnet 4
Internet Assigned Numbers Authority

see IANA
Internet Engineering Task Force see IETF
Internet Explorer 4, 123, 211–13
Internet Protocol version 4 see IPv4
Internet Protocol version 6 see IPv6
Internet Service Provider see ISP
Internet technologies 5–7

domain names 6–7
IP addresses 5–6
TCP/IP 5

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 629

intranets 10
invoking correct script 287–8
IP addresses 5–6

DHCP 6
IP 5
IPv6 5–6
ISP 5
routers 5

IPv4 5, 16
IPv6 5–6, 16
Isaacs, Scott, DHTML 188
ISO 54
ISO-8859–1 130
ISP 5, 16
iteration 20, 25
iterative methods 21–2

Jacobson, Ivar 22–3
Java 5

applets 9
JavaScript 5, 9, 13, 155–85, 187–224

Ajax 156, 210–21
characteristics 157–8
client-side form validation 201–9
control structures 173–8
debugging 163–4
DHTML 156, 188–91
DOM 125, 155–6
dynamic style sheets 198–200
events 191–8
keywords, types, objects 185
object use and creation 168–73
objects 158–63
purposes 156
types and variables 164–8
writing functions 178–81
see also interactive JavaScript

JavaScript characteristics 157–8
add script to web page 157–8
default scripting language 157
intrinsic events 157
meta tag 157
prototype language 157
window 157

JavaScript control structures 173–8
if/else statements 174
logical operators 175
for loops 177–8
relational operators 174–5
selection: simulation 175–6
while loops 176–7

JavaScript events 191–8
button 195–7
innerHTML and DOM 194–5
JavaScript URLs 197–8
onload 192–3
timer 193–4

JavaScript object use and creation
168–73

Arrays 171–3
Date objects 171

Math object 168–9
strings 169–70

JavaScript objects 158–63
Array 158, 164
comment syntax 159–60
Date 158, 164
document 158
event handlers 158
location 158
methods 158, 161
navigator 158
objects as properties 160–1
positioning scripts 161–3
properties 158–9
String 158
window 158

JavaScript types and variables 164–8
arithmetic on numeric

variables 165
declaring and using variables

164–5
increment/decrement operators

165–6
order of preference 167–8
prefix/postfix operators 166
shorthand expressions 166–7

JavaScript writing functions 178–81
external files 180–1
outside body element 179–80

Joint Photographic Experts Group
see JPEG

joint requirements workshop 27
JPEG 68
JScript 156

layers 11–12
business logic 11
data management 11
presentation 11

Leet Speak 613–15
Lie, Häkon 90
lifecycles 20
limiting records returned 443–9

search for matching
records 446–7

select certain number of
records 445

select only certain records 443–5
sorting records 448–9

line breaks and horizontal rules 62
empty elements 62

links 69–70
anchors 69
hyperlink 69
site logo top left 70
web link 69

lists 65–8
definition lists 65, 67–8
nesting ordered/unordered lists

65–7
ordered lists 65

unordered lists 65
see also styles for lists/tables

loose typing 592–6

malicious data injection 602–8
HTML elements 602–5
SQL injection 605–8

mark-up syntax 53–4
mashups 13–14
media types 59
metadata 54
method wars 22
Microsoft, software standards 556
MIME 59
minimisation 59, 151
modelling requirements 26–30

business objectives 26
prioritising requirements 28–30
ROI 26
web application requirements

gathering 27–8
MoSCoW 29
Mozilla Firefox 4, 123
MSXML 212
multiple arguments 379–81
multiple source files 476–8
multiple tables 449–53

using records to read another table
450–3

viewing data 449–50
Multipurpose Internet Mail Extension

see MIME
Must have, Should have, Could have,

Want to have see MoSCoW
MySQL 402

DBMS connection 435–7

n-tier architecture 12
National Center for Supercomputing

Applications see NCSA
navigation bar 46–7
NCSA 4, 16

CGI 5
Mosaic graphical browser 4

nested loops 269–70
Netscape 5, 8

JavaScript 156
Netscape Navigator 4

object comparison 516–19
object interfaces 520–2
Object Management Group 22
Object Modeling Technique see OMT
object orientation 465–93

arrays and objects 481–2
class members 466
constructors 479–81
data members 466
default arguments 484–5
definition 466–7
destructors 481

630 INDEX

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 630

functions and objects 483–4
methods 466
multiple source files 476–8
object invoking another 485–9
objects within objects 489–92
PHP and object orientation

467–76
polymorphism 467

object-oriented inheritance and
polymorphism 495–523

class abstraction 509–10
class constants 513–14
diagramming classes 496
final keyword 519–20
inheritance 497–501
object comparison 516–19
object interfaces 520–2
polymorphism 510–11
scope resolution operator 502–9
static members and methods

511–13
type hinting 514–16

Objectory 22
OMT 22
on-line 5
one-form-per-page usability 38
Opera 4
optimistic locking 3

Paamayim Nekudotayim 502–9
page

layout 114–18
redirection and referral 395–9

page/webflow design with storyboards
36–8

button gravity 38
one-form-per-page usability 38
stereotype labels 37

parsed character data 131–3
parser, PHP 230–1
password

encryption 611–12
quality 613–15

PDF 42
performance 3
persistence 3
pessimistic locking 3
PHP 5, 16, 37, 225–52

basic variables 233–4
comments 232–3
constants 238–9
definition 226–7
expressions 239–49
form interaction 278–9
jumping in and out 229–31
parser 230–1
predefined variable

superglobals 250
predefined variables 249–50
script 227–9
separating instructions 231–2

variable types 234–8
see also Ajax and PHP

PHP: Hypertext Preprocessor
see PHP

PHP development practice 568–602
error reporting 584–9
form data validation 596–602
global variables 589–92
loose typing 592–6

PHP expressions 239–49
arithmetic operators 240–1
array operators 248
assignment operators 241–2
bitwise operators 242–4
comparison operators 244
constants 239
error control operator 248
incrementing/decrementing

operators 245–7
logical operators 247
operands 239
operator precedence 248–9
operators 239
string operators 245
ternary operator 245
variables 239

PHP and forms 284–7
PHP linked to database 435–63

inserting, deleting, amending
records 453–8

limiting records returned 443–9
multiple tables 449–53
MySQL DBMS connection 435–7
reading from database 437–9
record counting and existence

checking 458–61
select and substring 461–2
separating database connection

439–41
viewing records 441–3

PHP and object orientation 467–76
$this 469
class creation 467
class data members and

methods 468–9
invoking class methods within same

class 473–4
multiple classes 474–6
multiple object instances 472–3
using class 469–72
visibility 468

PHP variable types 234–8
array 238
Boolean 235
escape characters 237
float 236
integer 235–6
naming 235
NULL 238
object 238
primitive data types 234

resource 238
string 236–8

phpMyAdmin interface
database creation 406–7
viewing database 407–10

PKI 8, 16
plugins 9
PNG 68
polymorphism 467, 510–11
pop-up dialogs 202–3

alert 202
confirm 203
prompt 203

Portable Document Format see PDF
Portable Network Graphics see PNG
portals 10–11

portlets 10
Vodafone Live! 10

portlets 10
presentation separation 89–91
priorities and conformance, web

accessibility 568–70
prioritising requirements 28–30

MoSCoW 29
programmable web 13
prolog 129
Public Key Infrastructure see PKI

quotation mark 55

radio buttons 291–2
random numbers 392–3
Rational Corporation 22
Rational Unified Process see RUP
RDF Site Summary see RSS
Real Player 9
Really Simple Syndication see RSS
record counting and existence

checking 458–61
how many records 458–60
record existence 460–1

record viewing 441–3
all returned records 441–3
whole record 441
see also limiting records returned

recursive functions 387–8
reliability 3
request-response protocol 7–8
requests 7–8
resolver programs 6
Return on Investment see ROI
returning more than one value 384–5
returning a value 382–4
Rich Site Summary see RSS
ROI 26
roles 34
RosettaNet, XML 128
routers 5
RSS 14, 16

and Ajax 216–17
Rumbaugh, James 22

INDEX 631

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 631

RUP 22–3
Ivar Jacobson 23

Safari 4
scope resolution operator 502–9
Secure Sockets Layer see SSL
security 2
select and substring 461–2
selections 293–5
semi-structured data 125–7

document order 127
variations in structure 126–7
XML 125–7

separating source files 388–9
server page 45
Service-Oriented Architecture see

SOA
sessions 355–60

page color 357–9
starting 355–7
un-register session variables

359–60
SGML 53–6

ANSI 54
apostrophe 55
attributes in tags 55–6
data about data 54
elements 55
GML 54
ISO 54
mark-up syntax 53–4
metadata 54
quotation mark 55
tags 54
validation 54
well-formed documents 56

Simple Mail Transfer Protocol see
SMTP

site logo top left 45–6, 70
site map 48–9
SMTP 5, 16
SOA 13–14, 16

APIs 13
mashups 13–14
programmable web 13
RSS 14
web services 13
XML 13

software development lifecycles 20–2
agility 20
iteration 20
iterative methods 21–2
lifecycles 20
waterfall model 20–1

software standards and web
standardisation 556

spanning with attributes 74–6
special characters 64–5
spikes 24
SQL 437

injection 605–8

SSL 8, 16
Standard Generalized Markup

Language see SGML
standards and accessibility see

conformance
static members and methods

511–13
store content in database 49–50
storyboarding 36–8
strict doctype 149–50
strings 310–17

change case of string 315–16
character access 311–12
concatenation 310–11
encrypt string 316
functions 316–17
length calculation 312–13
replace part of string 314
reverse string 315
string within string 314

strings and arrays 309–40
array creation 317–24
array manipulation 327–8
arrays with forms 324–7
strings 310–17

structure/content of presentation
layer 53–87

forms 76–84
HTML 56–7
HTML attributes 68–71
HTML document 57–60
HTML document type 61
lists 65–8
SGML 53–6
structuring text 61–5
tables 71–6

Structured Query Language see SQL
structuring text 61–5

citations and block quotes 62–4
idiomatic (phrase) elements 64
line breaks and horizontal

rules 62
special characters 64–5
subscripts and superscripts 64

style application 103–6
class attribute 103–4
class style to element subset 104–5
id attribute 106

style sheet cascades 112–14
style sheets 94–102

external 100–2
font size 99–100
grouping styles 95
internal 94–5
multiple styles 98–9
text formatting styles 95–8

styles for lists/tables 109–12
styling in presentation layer see CSS
subscripts and superscripts 64
Sun Microsystems 5
surface validation 201

switch construct 259–63
default statement 263
switch and break 261–3

system sequence diagrams 36
system/public doctype 141–3

FPI 142

table tags 71–3
table cells 72
table elements and rows 72
table example 73

tables 71–6
borders 76
organisation 73–4
spanning with attributes 74–6
tags 71–3
see also styles for lists/tables

tags 5, 8–9, 54, 57
TCP/IP 5, 16

FTP 5
SMTP 5

text formatting styles 95–8
font 95–8
see also structuring text

textareas 295–6
three-region layout 47–8
tiers and distributed systems 12

CRUD 12
n-tier architecture 12

time and date 389–92
accurate time 390–1
date array 390
date function 391
valid date 391–2

TP addresses 5–6
transactions 3
transition phase 25
transitional doctype 149
Transmission Control Protocol/Internet

Protocol see TCP/IP
Triple-A accessible web sites 578–9
type hinting 514–16

UML 19, 22–3, 52
Iconix 23
notations 30

UML and UP 22–5
Booch method 22
method wars 22
Objectory 22
OMT 22
RUP 22
UML 22–3
UP 23–5

Unicode Transformation Format 8
see utf-8

Unicode Transformation Format 15
see utf-15

Unified Modeling Language see UML
Unified Process see UP
Uniform Resource Identifier see URI

632 INDEX

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 632

Uniform Resource Locator see URLs
Uniform Resource Name see URNs
UP 19, 22–5, 52

construction phase 24–5
elaboration phase 24
inception phase 24
iteration 25
RUP 23
transition phase 25
whales 23

uploading files from forms 360–5
create PHP upload script 301–4
create upload form 300–1
view uploaded file 364–5

URIs 9, 16
URLs 9, 16
URNs 9, 16
use case diagrams 33–6

actors 33–4
goals 34
notation 34
roles 34
use case descriptions 34–6
use case realisation 34
WAE 34

use cases 38–41
alternate flows 39

user authentication and passwords
600–15

checking referrer 608–10
Leet Speak 613
password encryption 611–12
password quality 613–15
sessions for authentication

610–11
user and contributor communities 14
user-defined functions 374–5
utf-8 130
utf-15 130

validation 54, 137
variables and scope 376–8
Vodafone Live! 10

W3C 5, 57
CSS validation 564–7
Markup Validation Service 560–4
software standards 556

WAE 34, 42
walking skeleton 24
WatchFire WebXACT 579–82
waterfall model 20–1
Web 2.0 and Ajax 13–14

Ajax 14
JavaScript 13
service-oriented architectures

13–14
user and contributor

communities 14
web as software platform 13
XML 13

web accessibility 567–70
disability 567–8
priorities and conformance

568–70
web content accessibility

guidelines 568
web accessibility guidelines and

checkpoints 570–7
alternatives to auditory/visual

content 570–1
color 571
context and orientation 576
device-independence 574–5
embedded user interfaces 574
interim solutions 575
language usage 572
markup and style sheets 571–2
navigation 577
tables 572–3
technology transfer 573
time-sensitive content change 574
W3C technologies 576
web applications 577

web application architectures 11–12
layers 11–12
tiers and distributed systems 12

Web Application Extensions see WAE
web application requirements 19–52

analysis and design 41–2
analysis tools 30–8
design guidelines 50
inception phase 26
modelling requirements 26–30
software development lifecycles

20–2
UML 19
Unified Modeling Language and

Unified Process 22–5
UP 19
use cases 38–41
web page design patterns 45–50
webflow design 42–5

web application requirements
gathering 27–8

card-storming approach 27
focus groups 27
joint requirements workshop

27–8
web application security and

robustness 585–617
malicious data injection 602–8
PHP development practice

586–602
user authentication and passwords

608–15
web application server 2
web applications 1–17

architectures 11–12
blog 2
concurrency 2
developer 14

dynamic content 2
Internet technologies 5–7
Internet and World Wide

Web 4–5
optimistic locking 3
performance 3
persistence 3
pessimistic locking 3
reliability 3
security 2
special-purpose 10–11
transactions 3
Web 2.0 and Ajax 13–14
web application server 2
web server 2
wiki 2
World Wide Web 2
World Wide Web technologies 7–9

web as software platform 13
web link 69
web page design patterns 45–50

breadcrumbs 47
design guidelines 50
home page 48
navigation bar 46–7
site logo top left 45–6
site map 48–9
store content in database 49–50
three-region layout 47–8

web server 2
web services 13
web surfing 5
webflow design 36–8, 42–5

action object 44
cookie 43
dynamic content 43–4
dynamic webflow 44–5
server page 45

well-formed documents 56
whales 23
while loop construct 264–6
wiki 2
Wikipedia 2, 14

software standards 556
World Wide Web 2, 4–5

CERN 4
CGI 5
dot coms 4
NCSA 4
Tim Berners-Lee 4
web browser 4

World Wide Web Consortium see
W3C

World Wide Web technologies 7–9
HTML 8–9
HTTP 7–8
URLs, URIs and URNs 9

XHTML 53, 56–7, 149–51
email messages 367–70
empty elements 150–1

INDEX 633

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 633

frameset doctype 149
minimisation 151
strict doctype 149–50
transitional doctype 149

XML 13, 16, 53, 56, 127–9
design goals 128
metalanguage 127

XML components 129–36
attributes vs elements 134–6
CDATA sections 136
elements and parsed character

data 131–3
processing instructions 131
prolog 129
view pages 132

well-formed XML 133–4
XML declaration 130–1

XML declaration
ASCII 130
ISO-8859–1 130
utf-8 130
utf-15 130

XML document validation 137–49
DTD attribute declarations

146–9
DTD element declarations 143–6
DTDs 137–43
entities 149

XMLHttpRequest 210–16
security issues 217–18

server connection 218–19
XML data reading 219–21

XMLSpy 141, 619–28
Altova GmbH 619
functions 619
installation 621–4
new file 621–3
validating XML 623–4
XML transformations 626–8
XPath evaluation 625–6

XMLTV 129

Yahoo 1

zones 6

634 INDEX

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 634

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 635

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 636

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 637

Stobart-Index.qxp:Stobart-Index 11/7/07 7:04 PM Page 638

	246x189_StobartParsons.pdf
	Stobart-00FM.pdf
	Stobart-01.pdf
	Stobart-02.pdf
	Stobart-03.pdf
	Stobart-04.pdf
	Stobart-05.pdf
	Stobart-06.pdf
	Stobart-07.pdf
	Stobart-08.pdf
	Stobart-09.pdf
	Stobart-10.pdf
	Stobart-11.pdf
	Stobart-12.pdf
	Stobart-13.pdf
	Stobart-14.pdf
	Stobart-15.pdf
	Stobart-16.pdf
	Stobart-17.pdf
	Stobart-18.pdf
	Stobart-19.pdf
	Stobart-20.pdf
	Stobart-App.pdf
	Stobart-Index.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF00540068006f006d0073006f006e0020004c006500610072006e0069006e006700200054006500630068006e006f0020005400610073006b00200046006f007200630065002000730065007400740069006e0067007300200066006f00720020004100630072006f00620061007400200036002e00200054006f0020006200650020007500730065006400200062007900200043006f006d0070006f007300690074006f0072007300200066006f007200200061006c006c002000540068006f006d0073006f006e0020004c006500610072006e0069006e006700200061007000700072006f0076006500640020005000720069006e0074002000760065006e0064006f00720073002e0020004a0061006e007500610072007900200032003000300035002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

